Search Results
Found 33 results
510(k) Data Aggregation
(163 days)
The LOCATOR Angled Abutment is indicated for the attachment of full or partial, fixed and removable restorations retained by endosseous implants to restore masticatory function for the patient.
The purpose of this submission is to expand the Indications for Use of the LOCATOR® Angled Abutment product line (K243272 & K233587) by adding compatibility of existing abutments with various new dental implant systems from Implant Direct and Biohorizons. Additionally, the submission expands the Indications for Use of the product line with a modified version of the predicate device shown to be compatible with the Implant Logistics Implant-One Series 300 and Series 400 Implant Systems. The LOCATOR Angled Abutment is designed and intended for the attachment of full or partial, fixed and removable, restorations retained by endosseous implants in the mandible or maxilla, as cleared to be used with LOCATOR FIXED (K213391) and LOCATOR Attachment Systems (K072878).
The LOCATOR Angled Abutments are manufactured from titanium (Ti-6Al-4V) and are titanium nitride (TiN) coated in various abutment heights, identical to the predicate device. The LOCATOR Angled Abutment interfacing features are provided at a 15 degree angle to allow for angle correction, substantially equivalent to the predicate device of K233587 and K243272. The abutments will be used with the accessories of the LOCATOR Implant Attachment System (retention inserts, denture attachment housing, and ancillary processing parts) and LOCATOR FIXED Attachment System (fixed inserts, denture attachment housing) for the attachment of a restoration, identical to the predicate device.
The provided document is an FDA 510(k) clearance letter for the LOCATOR® Angled Abutment, K250721. This document primarily focuses on demonstrating substantial equivalence to a predicate device and expanding indications for use, rather than detailing a study that proves the device meets specific performance acceptance criteria for a new clinical application.
Therefore, much of the requested information regarding study design, sample sizes, expert involvement, and ground truth establishment (which are typical for AI/ML device clearances or those requiring extensive clinical performance data) is not present in this type of regulatory submission for a dental implant abutment.
However, based on the information provided, I can construct a table for the acceptance criteria and reported "performance" in the context of this 510(k) submission, which is primarily a demonstration of mechanical compatibility and safety rather than a clinical efficacy study.
Here's an interpretation based on the provided text:
Overview of Device Performance and Acceptance Criteria (as per the 510(k) Submission)
The LOCATOR® Angled Abutment (K250721) is a dental implant abutment. The "study" proving it meets acceptance criteria in this context is a series of non-clinical tests and engineering analyses demonstrating its compatibility with various dental implant systems and confirming its mechanical properties and biocompatibility are substantially equivalent to previously cleared devices. The acceptance criteria are implicitly met by showing conformance to established standards and similarity to predicate devices.
1. Table of Acceptance Criteria and Reported Device Performance
Acceptance Criteria Category | Specific Acceptance Criteria (Implicit) | Reported Device Performance / Evidence Provided |
---|---|---|
Material Composition | Conformance to ASTM F136 for Ti-6Al-4V ELI (Titanium alloy) and presence of TiN coating. | Manufactured from Ti-6Al-4V ELI (ASTM F136 compliant) with TiN coating, "identical to the predicate device." |
Mechanical Strength & Fatigue (Worst-Case) | Withstand fatigue loading per ISO 14801:2016 for tallest abutment cuff height with smallest diameter OEM implant. | Fatigue testing conducted per ISO 14801:2016 for worst-case scenarios. Implicitly, the device passed. For Implant Logistics, existing 510(k) (K173701, K102822) required ISO 14801 testing, and the current design "does not create a new worst case." |
Biocompatibility | Conformance to ISO 10993-1 and ISO 10993-5 (cytotoxicity). | Biocompatibility assessed per ISO 10993-1 and ISO 10993-5, leveraging prior testing (K072878, K233587). Implicitly, the device is biocompatible. |
Packaging & Shipping Integrity | Packaging and device remain undamaged after validation testing. | Packaging and shipping validation testing completed; "worst case device and packaging were undamaged." |
Cleaning & Sterilization Validation | Device can be effectively cleaned and sterilized, identical to predicate, without creating new worst-case. | Cleaning and sterilization "identical to the predicate device," leveraging prior results (K233587, K243272). Engineering analysis established no new worst-case. |
MR Compatibility (Safety in MR Environment) | Conformance to ASTM standards (F2052, F2213, F2182, F2119) and FDA guidance for MR safety (Force, Torque, Heating, Image Quality). | MR compatibility testing conducted per specified ASTM standards and FDA guidance on Ti-6Al-4V components with similar features, leveraging prior results. Engineering analysis showed no new worst-case. |
Implant Compatibility (Functional) | Proper fit and function with specified new implant systems. | Critical features and tolerances verified functionally in OEM implants through "engineering analysis" and "cooperatively with the implant manufacturer (OEM)." The design for Implant Logistics systems was made "according to the manufacturer's specifications." |
2. Sample Size Used for the Test Set and Data Provenance
- Sample Size: Not explicitly stated as "sample size" in the conventional sense for a clinical trial. For physical testing (fatigue, packaging), standard engineering test specimen numbers would have been used, but these are not detailed. For material and biocompatibility, existing data was leveraged. Functional compatibility was primarily through engineering analysis.
- Data Provenance: The data comes from in-vitro non-clinical testing and engineering analyses conducted by the manufacturer, Zest Anchors, LLC, or leveraged from previous submissions (K243272, K233587, K213391, K072878, K173701, K102822). The origin is the manufacturer's internal testing and regulatory submissions. The nature of these tests is "retrospective" in the sense that results from previous validated tests (e.g., K233587 for TiN coating, K072878 for biocompatibility) are being applied ("leveraged") to demonstrate equivalence for the current device, implying these tests were performed in the past.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications
- Number of Experts: Not applicable. For this type of device (dental abutment) and submission (510(k) for expanded compatibility), "ground truth" is established through engineering specifications, material standards, and validated physical/mechanical testing protocols (e.g., ISO, ASTM). It does not involve human expert consensus on clinical images or patient outcomes.
- Qualifications of Experts: N/A, as the "ground truth" is based on objective, standardized physical and material properties, confirmed by engineering analysis.
4. Adjudication Method for the Test Set
- Adjudication Method: Not applicable. This is not a study requiring human adjudication of results. Engineering and laboratory tests have objective pass/fail criteria or conformance to standards.
5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study
- MRMC Study Done? No. MRMC studies are typically for AI/ML devices where human readers interpret diagnostic images. This device is a physical dental implant component.
- Effect Size of Human Readers Improvement: Not applicable.
6. Standalone Performance Study (Algorithm Only)
- Standalone Performance Study Done? No. This device is a physical medical device, not an algorithm.
7. The Type of Ground Truth Used
- Type of Ground Truth: The "ground truth" for this device's "performance" and "acceptance" is based on:
- Engineering specifications and drawings: Ensuring physical compatibility (e.g., fit with implants).
- International Standards: Conformance to mechanical testing standards (ISO 14801:2016 for fatigue), material standards (ASTM F136), and biocompatibility standards (ISO 10993 series).
- Predicate device performance: Demonstrating that the subject device's design, materials, and performance characteristics are "identical" or "substantially equivalent" to previously cleared devices.
8. The Sample Size for the Training Set
- Sample Size for Training Set: Not applicable. This is not an AI/ML device that requires a training set.
9. How the Ground Truth for the Training Set Was Established
- How Ground Truth Established: Not applicable.
Ask a specific question about this device
(186 days)
The Omnibut is a pre-manufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation.
The Omnibut™ is a transmucosal abutment used to support screw-retained prostheses on four or more implants. The subject device has a premanufactured connection for the platforms listed in Table 1 Compatible Implant Systems.
The system involves a ball abutment attached to an implant. A retention attachment allows for angle corrections of up to 30° off the implant axis. The ball abutment is inserted into the attachment is adjusted to the desired angle using an orientation screw. The abutment supports prostheses that connect via titanium cylinders, which are incorporated into resin or ceramic prostheses. Finally, the prostheses are retained to the abutment by prosthetic screws.
The subject device abutments and system components are manufactured from Ti-6Al-4V alloy conforming to ASTM F136. The subject device is a single use device is provided nonsterile and intended to be sterilized by the user prior to placement in the patient.
Here's a breakdown of the acceptance criteria and study information for the Omni-Directional Multi-unit Abutment System (Omnibut™), based on the provided FDA 510(k) summary:
Description of the Device
The Omnibut™ is a pre-manufactured prosthetic component directly connected to endosseous dental implants. It is intended for use as an aid in prosthetic rehabilitation, specifically for supporting screw-retained prostheses on four or more implants. The system includes a ball abutment attached to an implant, with a retention attachment allowing for angle corrections of up to 30° off the implant axis. It supports prostheses that connect via titanium cylinders, which are incorporated into resin or ceramic prostheses. The device is made from Ti-6Al-4V alloy and is provided non-sterile, requiring user sterilization.
1. Table of Acceptance Criteria and Reported Device Performance
Acceptance Criteria (Standard / Test) | Description of Test | Reported Device Performance (Results) |
---|---|---|
Biological Evaluation | ||
ISO 10993-1:2018; FDA Guidance on the Use of ISO 10993-1, 2023 | Biological Evaluation of Medical Devices – Part 1: Evaluation and Testing within a Risk Management Process | PASS – All biological endpoint testing performed on the device, along with the analysis on the physical and chemical information, returned passing results. All biological endpoint testing suggests that the Omnibut is biocompatible and does not present a foreseen biological risk to those patient populations it is intended for. |
ISO 10993-5 (2009) | Biological Evaluation of Medical Devices – Part 5: Tests for in vitro cytotoxicity | PASS – The test article showed no evidence of causing cell lysis or toxicity. The test article met the requirements of the test since the grade was grade 0 (no reactivity). |
Sterilization Validation | ||
AAMI TIR12:2020; ANSI/AAMI/ISO 17665-1:2026/(R)2013; ANSI/AAMI ST79:2017 | Designing, Testing, And Labeling Medical Devices Intended For Processing By Health Care Facilities: A Guide For Device Manufacturers, Overkill method according to Section 5.7 | PASS – Results from testing have demonstrated that the Omnibut was able to achieve a 10-6 SAL when using the recommended parameters in the Instructions for Use (IFU). |
Mechanical Performance | ||
ISO 14801:2016; FDA Guidance Document, "Class II Special Controls Guidance Document: Root-form Endosseous Dental Implants and Endosseous Dental Abutments" (May 12, 2004) Section 8 | Dentistry — Implants — Dynamic loading test for endosseous dental implants | PASS – The results conclude that when evaluated in a manner consistent with ISO 14801:2016, the Omnibut met all predetermined acceptance criteria. |
No specific standard (Compatibility) | Reverse engineering dimensional analysis of OEM implant bodies, OEM abutments, and OEM abutment screws were performed to demonstrate that the Omnibut abutments are compatible with the noted implant systems. Compatibility must be demonstrated to ensure proper device functionality. | PASS – The engineering and dimensional analysis concluded that each Omnibut design is compatible with the applicable implant connection. PASS - Omnibut prosthetic side components were demonstrated to be compatible. |
No specific standard (Retention Force Testing) | The Omnibut has a retention attachment. Retention Force testing was performed via tensile push-out to ensure that the attachment will not detach during clinical use. | PASS – The Omnibut retention attachment did not detach at a predetermined acceptable force. |
No specific standard (Simulated-Use Testing) | Simulated Use of four Omnibuts with components connected to a Titanium Bar under a clinically relevant cyclic load. | PASS – The Omnibut and components did not yield, deform, or fracture after fatigue testing. |
No specific standard (Simulated Cleaning Testing) | Simulated cleaning of Omnibuts in a fixture with a clinically worst case cleansibility construction. | PASS – All parts of the Omnibuts were clean of soil indicators after six soilage and cleaning cycles. |
MR Safety | ||
FDA guidance "Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment" (May 2021) | Non-clinical analysis to evaluate the subject device in the MR environment using scientific rationale and published literature (TO Woods, JG Delfino, and S Rajan, "Assessment of Magnetically Induced Displacement Force and Torque on Metal Alloys Used in Medical Devices," Journal of Testing and Evaluation, Volume 49, No. 2, 2021, pp. 783-795). | The analysis addressed parameters per the FDA guidance, including magnetically induced displacement force and torque. The document does not explicitly state the results (e.g., "MR Safe" or "MR Compatible"), but implies that the analysis was sufficient to support safety in the MR environment based on the scientific rationale and literature used. |
2. Sample Size Used for the Test Set and Data Provenance
The provided document does not specify the exact sample sizes for each individual non-clinical test (e.g., number of abutments tested for dynamic fatigue, retention force, simulated use, or cleaning). It refers to the testing as "non-clinical" bench testing.
- Test Set Provenance: The data is generated from bench testing (laboratory studies), not from clinical data involving human patients. Therefore, information like "country of origin of the data" or "retrospective/prospective" is not applicable in the typical sense of clinical trials. The testing was performed in vitro.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts
This information is not applicable as the studies are non-clinical bench tests. The "ground truth" for these tests is based on established engineering standards (e.g., ISO 14801), biological evaluation standards (ISO 10993), and internal company protocols for mechanical and cleaning validation, not on expert clinical interpretation of patient data.
4. Adjudication Method (e.g., 2+1, 3+1, none) for the Test Set
This information is not applicable as the studies are non-clinical bench tests. Adjudication methods are typically employed in studies involving human interpretation or clinical endpoints to resolve discrepancies in assessment.
5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
An MRMC comparative effectiveness study was not done. This type of study is relevant for AI-powered diagnostic devices involving human readers/interpreters, which is not the case for this dental implant abutment. The device is a physical component, not a diagnostic AI tool.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done
A standalone performance study was not done in the context of an algorithm. This question is relevant for AI/software devices; this device is a physical medical device. The "standalone" performance here refers to the device's mechanical and biological performance on its own, which is what the bench tests evaluate.
7. The Type of Ground Truth Used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" for the non-clinical performance evaluations relies on:
- Established engineering and biological standards: e.g., ISO 14801:2016 for dynamic fatigue, ISO 10993 for biocompatibility, ANSI/AAMI/ISO for sterilization.
- Predetermined acceptance criteria: For retention force, simulated use, and cleaning efficacy, the "ground truth" is defined by specific pass/fail criteria established during the test design based on expected clinical performance and safety.
- Dimensional accuracy and compatibility models: For compatibility testing, the "ground truth" is established by the dimensions and specifications of OEM implant bodies and abutments.
8. The Sample Size for the Training Set
This information is not applicable because the device is a physical medical component, not a machine learning model or AI algorithm that requires a training set.
9. How the Ground Truth for the Training Set was Established
This information is not applicable for the same reason as above (not a machine learning model).
Ask a specific question about this device
(90 days)
The LOCATOR Angled Abutment is indicated for the attachment of full or partial, fixed and removable restorations retained by endosseous implants to restore masticatory function for the patient.
The LOCATOR Angled Abutment consists of various height abutments with identical attachment features compared to LOCATOR Abutments of the LOCATOR Implant Attachment System, cleared in K072878. The LOCATOR Angled Abutment will be used with the accessories of the LOCATOR Implant Attachment System (retention inserts, denture attachment housing, and ancillary processing parts) and LOCATOR FIXED Attachment System (fixed inserts, denture attachment housing) for the attachment of a restoration. The LOCATOR Angled Abutment interfacing features are provided at a 15 degree angle to allow for angle correction, substantially equivalent to the predicate device of K233587. The LOCATOR Angled Abutments are manufactured from titanium (Ti-6Al-4V) and are titanium nitride (TiN) coated, identical to the predicate device.
This document (K243272) is a 510(k) premarket notification for a dental device, the LOCATOR Angled Abutment. It is important to note that this document does not describe the performance of software or an AI device. Instead, it describes a mechanical dental implant component and its substantial equivalence to previously cleared predicates.
Therefore, many of the requested categories related to AI/software performance criteria, expert adjudication, MRMC studies, ground truth establishment for AI/ML, and training set information are not applicable to this type of medical device submission.
However, I can extract the relevant information regarding the acceptance criteria (in terms of performance testing for a mechanical device) and how the device meets them:
1. Table of Acceptance Criteria (for a mechanical device) and Reported Device Performance:
Acceptance Criteria | Reported Device Performance |
---|---|
Functional Verification (Fit and Performance with OEM Implants) | Critical features of OEM implant bodies, abutments, and abutment fixation screws were identified and measured using calibrated equipment. Specifications for the design were created based on this data. All critical tolerances were verified functionally in OEM implants, demonstrating that the abutments fit and perform as intended. |
Fatigue Resistance (ISO 14801:2016) | Fatigue testing was performed for the tallest abutment cuff height LOCATOR Angled Abutment with the smallest diameter OEM implant. While no specific numerical acceptance threshold for fatigue cycles is explicitly stated, the implication is that the device met the performance requirements for substantial equivalence to the predicate, which would include passing this test. |
TiN Coating Performance (ASTM F1044, ASTM F1147) | The Titanium Nitride (TiN) coating performance was tested per ASTM F1044 and ASTM F1147. This indicates that the coating, identical to the predicate device, meets the specified standards for performance. |
Packaging and Shipping Validation | Packaging and shipping validation testing was completed. The LOCATOR Angled Abutment (worst-case device and packaging) was undamaged after the test, meeting the desired outcome. |
Cleaning and Sterilization Efficacy | The cleaning and sterilization methods are identical to the predicate device (K233587), implying they meet established efficacy standards. |
MR Compatibility (ASTM F2052-21, F2213-17, F2182-19, F2119-07 and FDA Guidance) | MR compatibility testing (Force, Torque, Heating (RF & Gradient field), Image Quality, Vibration) was previously conducted on similar Ti-6Al-4V components. An engineering analysis established that the LOCATOR Angled Abutment does not create a new worst-case scenario for MR compatibility, thus meeting the criteria based on existing data. |
Biocompatibility (ISO 10993-1, ISO 10993-5) | Biocompatibility assessment was conducted using testing from K072878 and additional cytotoxicity testing per ISO 10993-5 (cleared under K233587). This indicates the device materials and design are biocompatible and safe for use in the human body. |
Study Details (for a mechanical device):
-
Sample sizes used for the test set and the data provenance:
- Specific quantitative sample sizes for each mechanical test (e.g., number of abutments fatigued, number of coatings tested) are not detailed in this summary.
- The data provenance is from non-clinical performance testing conducted by the manufacturer, Zest Anchors, LLC. This is typically internal laboratory testing.
- The nature of the tests (fatigue, coating, packaging, functional fit) indicates this is prospective testing performed specifically to support this regulatory submission. Country of origin for data is not specified but is implicitly from the manufacturer's testing facilities (likely USA, given the submission location).
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
- This question is not applicable as the "ground truth" for a mechanical device is established through objective engineering measurements and standardized performance tests (e.g., ISO, ASTM standards), not by human expert consensus on interpretations. The "experts" involved would be qualified engineers and technicians performing the tests.
-
Adjudication method (e.g. 2+1, 3+1, none) for the test set:
- Not applicable. Adjudication methods like 2+1 or 3+1 are used for establishing ground truth from multiple human readers/experts in AI/medical image analysis. For mechanical device testing, the results are objectively measured and compared against predefined performance specifications.
-
If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- Not applicable. This device is a mechanical dental abutment, not an AI or software product. Therefore, no MRMC study involving human readers and AI assistance was conducted or is relevant.
-
If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
- Not applicable. This device is a mechanical abutment, not an algorithm.
-
The type of ground truth used (expert concensus, pathology, outcomes data, etc.):
- The "ground truth" for this device's performance is based on established engineering principles, material science specifications, and adherence to international standards (e.g., ISO 14801, ASTM F1044, ASTM F1147, ISO 10993). Functional fit was verified against OEM implant specifications through direct testing.
-
The sample size for the training set:
- Not applicable. This is a mechanical device, not a machine learning model. There is no "training set."
-
How the ground truth for the training set was established:
- Not applicable. As above, no training set exists for this type of device.
In summary, the provided document explicitly states that the submission aims to demonstrate substantial equivalence of the new LOCATOR Angled Abutment variations to existing predicate devices. This is achieved by showing that the new abutments share the same intended use, principles of operation, materials, manufacturing processes, and fundamental design, and they meet the same functional and performance characteristics through non-clinical testing. The "acceptance criteria" here refer to the successful completion and passing of these engineering and material performance tests against established standards.
Ask a specific question about this device
(416 days)
NUVENTUS NV.C™ Dental Implants are indicated for the functional and esthetic oral rehabilitation of the upper or lower jaw of edentulous or partially edentulous patients. NUVENTUS NV.C™ dental implants may be used for immediate, early or delayed implantation following the extraction or loss of natural teeth. The implants can be placed with immediate loading for single-tooth or multiple teeth restorations when good primary stability is achieved and with appropriate occlusal loading to restore chewing function. NUVENTUS NV.CTM Dental Implants are compatible for use with the following prosthetic interfaces.
Implant System Prosthetic Compatibility | Platform Size/Designation |
---|---|
Nobel Biocare Internal Conical Connection (CC) | NP CC |
RP CC |
The purpose of this submission is to obtain marketing clearance for NUVENTUS NV.C™ Dental Implant System endosseous dental implants and cover screws. The dental implants are intended to interface with Internal Conical Connection (CC) prosthetic components from Nobel Biocare.
A summary of the subject device implant and the associated compatible OEM prosthetic connection is provided in the table Summary of Subject Device Implant Designs.
| Subject Device Implant
Description | Platform
Designation | Length (mm)* | | | | | OEM Prosthetic Compatibility
(K071370, K161435, K161416) |
|---------------------------------------|-------------------------|--------------|----|------|----|----|-------------------------------------------------------------|
| Implant, NV.C, Platform NP, Ø3.5 mm | NP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, NP Platform |
| Implant, NV.C, Platform NP, Ø4.3 mm | NP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, NP Platform |
| Implant, NV.C, Platform RP, Ø5.0 mm | RP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, RP Platform |
The subject device dental implants have a conical abutment seating surface on the interior of the implants and internal threads so that prosthetic components may be fastened to the implant. The implant lines have two (2) abutment interface connections with internal geometric features to allow for rotational resistance of the mating abutment. All subject device implants are manufactured from Ti-6Al-4V alloy conforming to ASTM F136.
The external surface of all subject device implants is threaded, and the implant body tapers at the apical end. which includes two (2) cutting flutes. At the coronal end. the Ø4.3mm and Ø5.0mm (body diameter) subject device implants have two (2) fluted features on the body of the implant spaced 180° apart. Each fluted feature has horizontal grooves spaced vertically within the flute surface. The number of grooves within each flute ranges from 3 to 5 and the actual number is a function of the implant length. The Ø3.5mm (body diameter) subject device implants do not have fluted features. The endosseous surface of all subject implants is textured by blasting with resorbable media
The subject device implants are compatible with prosthetic components that interface with Nobel Biocare Internal Connection implants. The subject device cover screws are manufactured from Ti-6A1-4V alloy conforming to ASTM F136 and are anodized to identify the prosthetic platform (NP and RP).
The compatible Nobel Biocare Internal Conical Connection prosthetic components (NP and RP platforms) include cover screws, healing abutments, temporary abutments esthetic abutments, straight multi-unit abutment, and angled multi-unit abutments.
All subject device implants and cover screws are individually packaged and are provided sterile.
The FDA document provided pertains to a 510(k) premarket notification for a dental implant system (NUVENTUS NV.C™ Dental Implant System). This document focuses on demonstrating substantial equivalence to predicate devices through engineering analysis, non-clinical performance data (e.g., mechanical testing, biocompatibility), and a review of clinical literature. It does not present a study proving the device meets specific acceptance criteria based on AI/ML performance metrics, expert consensus, or clinical outcomes from a new study specific to an AI device.
Therefore, I cannot extract the requested information regarding acceptance criteria, AI/ML study design (sample size, data provenance, expert ground truth, adjudication, MRMC study, standalone performance), or training set details because this information is not present in the provided text.
The document discusses performance data related to the dental implant itself (e.g., sterilization, biocompatibility, mechanical testing, surface analysis), and clinical literature data to support the substantial equivalence of the implant's design features with established predicate devices. The "Clinical Testing Literature Table" outlines existing studies on predicate implants, reviewing their clinical outcomes (like bone level changes) to support the subject device's design principles. This is not the same as a study testing an AI device's performance against defined acceptance criteria.
In summary: The provided text is a 510(k) submission for a dental implant system, not an AI/ML-based medical device. Thus, the requested details specific to AI/ML device performance and validation studies are not available in this document.
Ask a specific question about this device
(139 days)
CEREC Cercon 4D™ Abutment System is intended for use in partially or fully edentulous mandibles and maxillae in support of single cement-retained restorations.
The system comprises three parts:
- CEREC Cercon 4D™ Abutment Block
- TiBase
- CAD/CAM system
The CEREC Cercon 4D™ ceramic structure cemented to the TiBase is recommended for two-piece hybrid abutments for single tooth restorations and hybrid abutment crowns, used in conjunction with endosseous dental implants.
The CEREC Cercon 4D Abutment Blocks, which are used for fabrication of a ceramic structure, two-piece hybrid abutments (meso-structure and crown) and abutment crowns, that are cemented to a TiBase (titanium base) used with dental implant systems. The CEREC Cercon 4D Abutment Blocks are not provided as the finished, fully assembled dental implant medical devices. The abutment blocks are materials supplied to dental professionals that must be further processed/manufactured using CAD/CAM technology and they are not intended to be reused as in the context of direct patient-applied devices and materials.
CEREC Cercon 4D™ Abutment Block are Yttria-doped zirconia blocks suitable for chairside and lab side use in fabrication of single cement-retained restorations. CEREC Ceron 4D™ Abutment Block are designed with a pre-drilled screw access channel and anti-rotation feature. The design allows for fabrication of a ceramic structure, two-piece hybrid abutments (mesostructure and crown) and abutment crowns, that are cemented to theBase (Titanium base) used with dental implant systems.
The provided document describes the substantial equivalence of the CEREC Cercon 4D™ Abutment Blocks and System, primarily focusing on non-clinical performance and material characteristics, rather than an AI/ML-based device. Therefore, many of the requested elements pertaining to AI/ML device studies (e.g., sample size for test set, data provenance, number of experts for ground truth, adjudication method, MRMC studies, standalone performance, training set details) are not applicable or cannot be extracted from this document.
However, I can extract information related to the acceptance criteria and study that proves the device meets those criteria from the perspective of a medical device (specifically, a dental abutment system), even without AI elements.
Here's the information based on the provided text, with Not Applicable (N/A) for fields that relate to AI/ML studies and are not covered in this document.
Acceptance Criteria and Device Performance for CEREC Cercon 4D™ Abutment Blocks, CEREC Cercon 4D™ Abutment System
The device under review is primarily a dental abutment system, and its performance is evaluated based on material properties, mechanical strength, and software integration, not on diagnostic accuracy or AI assistance.
1. Table of Acceptance Criteria and the Reported Device Performance
Test Performed | Test Method/Applicable Standards | Acceptance Criteria | Reported Performance (Results) |
---|---|---|---|
Flexural Strength | ISO 6872:2015 Amd 1. 2018 Dentistry-Ceramic Materials | >1,100 MPa | Pass |
Fatigue Testing | ISO 14801:2016 Dentistry-Implants-Dynamic loading test for endosseous dental implants | (Implied: Meets requirements) | Pass |
Sterilization Validation | ISO 17665-1 Sterilization of health care products - Moist heat - Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices | Achieve a Sterility Assurance Level (SAL) of 10⁻⁶ | Validated |
Biocompatibility | ISO 10993 standard series (specifically ISO 10993-5, -10, -23) | Meets ISO 10993 requirements | Meets requirements |
Software Validation (Angulation) | Internal software integration requirements for the addition of the proposed device | Max angulation of 20° (User cannot proceed if outside) | Meets requirements |
Software Validation (Wall Thickness) | Internal software integration requirements for the addition of the proposed device | Minimal wall thickness of 0.5 mm (User cannot proceed if outside) | Meets requirements |
2. Sample size used for the test set and the data provenance
- Sample Size for Test Set:
- For Flexural Strength (Table 8.1): Not explicitly stated, but typically involves a certain number of samples to ensure statistical significance as per ISO 6872.
- For Fatigue Testing (Table 8.2): "New fatigue testing was conducted on the worst-case combinations relating to the greatest angulation, the platform size and the gingival height for the proposed Dentsply Sirona TiBase/Dentsply Sirona Implant Systems and Third Party TiBase/Third Party Implant Systems (Camlog) combinations." The exact number of samples per test condition is not specified in the document, but standardized tests like ISO 14801 would stipulate a minimum.
- For Sterilization Validation, Biocompatibility, and Software Validation: Not explicitly specified in terms of sample count in this summary.
- Data Provenance: The document does not specify the country of origin of the data. The tests are described as "non-clinical tests" and "performance bench testing," indicating laboratory-based studies. The document does not mention if the data is retrospective or prospective, as this distinction is more relevant for clinical studies.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
Not applicable. This device is not an AI/ML diagnostic tool requiring expert ground truth for image interpretation or similar. The "ground truth" (or more accurately, established performance standards) for this device is based on mechanical properties and ISO standards, which are objective and do not require expert human interpretation in the way an AI diagnostic system would.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
Not applicable, as no human expert interpretation or consensus review is involved in the performance testing of this device (e.g., physical strength, material composition).
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
Not applicable. This is not an AI-assisted diagnostic device; therefore, MRMC studies are irrelevant.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
Not applicable. This is not an algorithm-based device. Its "system" aspect refers to the combination of the abutment block, TiBase, and CAD/CAM system for fabrication, not an AI algorithm. The performance described is of the physical components and the software's ability to constrain design parameters.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
The "ground truth" for this device's performance is established by international consensus standards (e.g., ISO 6872, ISO 14801, ISO 10993, ISO 17665-1) for dental materials and implants, along with internal software integration requirements. These are objective, quantitative measures rather than subjective human interpretations or clinical outcomes data in the context of diagnostic accuracy.
8. The sample size for the training set
Not applicable. This device does not have a "training set" in the context of machine learning.
9. How the ground truth for the training set was established
Not applicable. This device does not have a "training set" in the context of machine learning.
Ask a specific question about this device
(126 days)
AOT & T-L Abutment is intended for use in conjunction with the fixture in partially or fully edentulous mandibles and maxillae, in support of multiple-unit restorations.
It is compatible with the following systems:
- · Astra OsseoSpeed EV(K130999) 3.0
- · Astra OsseoSpeed EV(K120414) 3.6, 4.2, 4.8, 5.4 mm
- · Dentium Company Limited Implantium (K041368): 3.6, 4.0, 4.5, 5.0 (Regular)
- · Implant Direct Legacy2(K192221) 3.0
- · Megagen AnyRidge Internal Implant System (K140091) 3.5, 4.0, 4.4, 4.9, 5.4 (3.1)
- Neodent Implant System GM Helix (K163194, K180536) 3.5, 3.75, 4.0, 4.3, 5.0 (3.0) 6.0 (3.0)
- · Nobel Active 3.0 (K102436) 3.0
- · Nobel Active Internal Connection Implant (K071370) NP RP 3.5, 4.3, 5.0
- · Nobelactive Wide Platform (Wp) (K133731) WP 5.5
- · TS Fixture System (K121995) 3.5 (3.75), 4.0 (4.2), 4.5 (4.6) , 5.0 (5.1) mm (Mini, Regular)
- Straumann BLX Implant (K173961, K181703, K191256) 3.5, 3.75, 4.0, 4.5, 5.0, 5.5, 6.5 (RB, WB)
- · Straumann 02.9 mm Bone Level Tapered Implants, SC CARES Abutments (K162890) 2.9 (SC)
- · Straumann® Bone Level Tapered Implants (K140878) 3.3, 4.1, 4.8 (NC, RC)
- · Zimmer 3.1mmD Dental Implant System (K142082) 3.1 (2.9)
- · Screw Vent® and Tapered Screw Vent® (K013227) 3.7(3.5), 4.1(3.5), 4.7(4.5), 6.0(5.7)
AOT & T-L Abutment which are placed into the dental implant to provide support for the prosthetic restoration. The abutments are made of Titanium grade Ti-6A1-4V ELI (meets ASTM Standard F-136). AOT abutment is a straight multi-unit abutment that connect implant fixtures to a restoration, such as a dental bridge or a denture. AOT products includes abutments and components (AOT Base, AOT Temporary, AOT Base Screw, AOT Plus Screw). T-L abutment is for partial and full arch restorations on endosseous dental implants. AOT & T-L abutments are provided in various gingival cuff height ranging from 1 to 3 mm for AOT , 1 to 6 mm for T-L.
The provided document describes the TruAbutment Inc. AOT & T-L Abutment and its substantial equivalence to a predicate device. This document focuses on the non-clinical testing for dental implant abutments, primarily mechanical and sterilization performance, rather than clinical efficacy involving human readers or AI.
Therefore, many of the requested categories related to human-in-the-loop performance, statistical measures like effect size, and large-scale clinical study methodologies are not applicable to this 510(k) submission.
Here's a breakdown of the available information based on your request:
Acceptance Criteria and Reported Device Performance
The acceptance criteria are implicitly defined by compliance with specified ISO standards and FDA guidance documents. The reported device performance is that it met these criteria.
Acceptance Criteria (Standard / Guidance) | Reported Device Performance |
---|---|
Fatigue Test: ISO 14801:2016 | Met the criteria of the standard. |
End User Steam Sterilization: ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010 | Met the criteria of the standard. |
Biocompatibility: ISO 10993-1:2009, ISO 10993-5:2009, ISO 10993-10:2010 | Met the criteria of the standard. |
FDA Guidance: "Class II Special Controls Guidance Document: Rootform Endosseous Dental Implants and Endosseous Dental Implant Abutments" | Complied with the guidance for comparative fatigue testing. |
Substantial Equivalence (Mechanical Strength): For all compatible OEM implant lines | Fatigue limit data demonstrated the construct strengths to be substantially equivalent to the predicate device. |
Material: Ti-6Al-4V ELI (ASTM F136) | Confirmed to be made of this material. |
Sterile State: Non-sterile (end-user sterilization) | Confirmed by sterilization validation. |
Intended Use: Functionally equivalent to predicate | Verified to be substantially equivalent in intended use. |
Design/Dimensions: Similar to predicate (with minor differences considered acceptable) | Dimensional analysis and reverse engineering indicated compatibility and substantial equivalence despite minor differences. |
Study Details
-
Sample size used for the test set and the data provenance (e.g., country of origin of the data, retrospective or prospective):
- Sample Size: Not explicitly stated for specific tests. For mechanical fatigue testing (ISO 14801), it mentions "worst-case constructs" were subjected to testing, implying a representative selection rather than a large clinical sample. Industry standards typically specify minimum sample sizes for such tests (e.g., 5-10 samples per test group for fatigue).
- Data Provenance: Not specified, but likely from laboratory testing conducted by the manufacturer or a contracted third-party lab. It's a non-clinical, bench-top study.
- Retrospective or Prospective: Non-clinical laboratory testing is neither retrospective nor prospective in the clinical sense. It's a controlled experimental study.
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g., radiologist with 10 years of experience):
- Not applicable. This is a non-clinical, bench-top engineering and materials performance study, not a diagnostic or clinical efficacy study requiring expert human interpretation of data for ground truth. Compliance with engineering standards and material specifications forms the basis of "ground truth."
-
Adjudication method (e.g., 2+1, 3+1, none) for the test set:
- Not applicable. Adjudication methods are typically used in clinical trials or studies involving subjective human interpretation (e.g., image reading) to resolve discrepancies. This study involves objective measurements from laboratory tests.
-
If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- Not applicable. This is a non-clinical technical performance study for dental implant abutments, not a study evaluating human reader performance or AI assistance.
-
If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
- Not applicable. This device is a physical dental abutment, not a software algorithm. The "standalone" performance here refers to the device's inherent mechanical properties and material characteristics as tested against engineering standards.
-
The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
- Ground Truth: Engineering standards (ISO 14801, ISO 17665, ISO 10993), material specifications (ASTM F136), and dimensional compatibility with OEM implant systems. Performance is measured objectively against these established criteria.
-
The sample size for the training set:
- Not applicable. There is no "training set" in the context of this non-clinical performance evaluation. This is not a machine learning or AI device.
-
How the ground truth for the training set was established:
- Not applicable for the same reason as above.
Ask a specific question about this device
(87 days)
SIMDA Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
SIMDA Abutment is made of titanium alloy (Ti-6Al-4V ELI, ASTM F136) intended for use as an aid in prosthetic restoration. It consists of Pre-Milled Blank and Ti-Base abutment. It has a premanufactured connection interface that fits directly to an endosseous dental implant.
This FDA 510(k) summary describes a dental device, the SIMDA Abutment. However, it does not include information that directly addresses the specific questions you've asked about acceptance criteria and a study proving a device meets them, particularly for an AI/ML powered device.
Here's why and what information is provided:
The document is a premarket notification for a Class II medical device, specifically dental implant abutments. These are physical components used in dental restorations, not an AI/ML powered diagnostic or therapeutic device. Therefore, the concepts of "acceptance criteria for an AI model," "test set," "ground truth," "MRMC studies," "effect size of human readers with AI assistance," or "standalone algorithm performance" are not applicable to this submission.
The "studies" mentioned are non-clinical (mechanical, biological) tests demonstrating the physical safety and performance of the abutments and their compatibility with existing dental implant systems.
Here's a breakdown of the relevant information provided, framed as closely as possible to your request, but acknowledging the device type:
Device: SIMDA Abutments (K232271)
Device Type: Endosseous Dental Implant Abutment (physical medical device, not AI/ML powered)
1. A table of acceptance criteria and the reported device performance
The document sets design limits and then demonstrates conformity through non-clinical testing. The "acceptance criteria" here are rather design specifications and performance standards for dental abutments.
Acceptance Criteria (Design Parameters/Limitations) | Reported Device Performance (Demonstrated through testing) |
---|---|
Pre-Milled Blank (for Patient-specific abutment): | |
- Minimum and Maximum Gingival (Cuff) Height: 0.5~5mm | "The minor difference between the two products in the design parameters [...] was evaluated as part of the performance testing and was determined to not impact the performance of the device." - Implies device meets these parameters and performs acceptably. |
- Minimum and Maximum diameter at abutment/implant interface: Ø4.0~Ø8.0 | |
- Minimum and Maximum length of abutment: 4.5~13mm | |
- Minimum and Maximum length of abutment post (length above the abutment collar/gingival height): 4~8mm | |
- Minimum wall thickness at abutment/implant interface: 0.4mm (Predicate: 0.4mm, Proposed: 0.39~0.55mm) | "This change in technological characteristics [minimum thickness] was evaluated as part of the performance testing and was determined to not impact the performance of the device." - Indicates the slightly wider range for the proposed device (0.39-0.55mm) still met performance requirements. |
- Minimum and Maximum abutment angle: 0~25° | |
Ti-Base (for Zirconia top-half): | |
- Post Angle (°): 0~15 | Identical to predicate. Non-clinical testing results "demonstrated the substantial equivalence with the primary predicate." |
- Cuff Height (mm): 0.5~5.0 | |
- Post Length (mm): 4.0~6.0 | |
- Diameter (Ø, mm): 5.0~8.0 | |
- Thickness (mm): 0.4 | |
General Performance: | |
- Fatigue Resistance: Must meet ISO 14801 and FDA special controls guidance. | Fatigue testing followed ISO 14801 and the FDA special controls guidance document. Results "demonstrated the substantial equivalence with the primary predicate." |
- Sterilization Efficacy: Must meet ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010. | End User Steam Sterilization Test according to ISO 17665-1:2006, 17665-2:2009 and ANSI/AAMI ST79:2010. Results "demonstrated the substantial equivalence with the primary predicate." |
- Biocompatibility: Must meet ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010. | Biocompatibility tests according to ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010. Results "demonstrated the substantial equivalence with the primary predicate." |
- MRI Safety: Must address magnetically induced displacement force and torque (per FDA guidance "Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment"). | "Non-clinical worst-case MRI review was performed... using scientific rationale and published literature... Rationale addressed parameters per the FDA guidance... including magnetically induced displacement force and torque." - Implies the device is deemed safe in the MR environment based on this review. |
- Compatibility with OEM Implant Systems: Precision implant/abutment interface. | Dimensional analysis and reverse engineering of critical features... Cross sectional images were provided to demonstrate substantially equivalent compatibility. The testing aided implant to abutment compatibility and has established substantial equivalency of the proposed device with the predicate device. |
2. Sample sized used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
- This information is not provided. For physical tests (fatigue, biocompatibility, sterilization), sample sizes would typically be determined by the relevant ISO standards.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
- Not applicable. "Ground truth" in the context of AI/ML is not relevant here. The "truth" is established by physical measurement, adherence to material standards, and documented mechanical performance.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
- Not applicable. Adjudication methods are typically for subjective assessments, whereas these are objective physical tests.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- Not applicable. This is a physical dental device, not an AI-assisted diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- Not applicable. This is a physical dental device.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
- For physical tests, the "ground truth" is defined by the ISO standards and FDA guidance documents to which the device is tested. This includes established methods for fatigue testing, biocompatibility evaluation, and sterilization efficacy. For compatibility, it's about precise dimensional matching and mechanical fit to existing OEM implant systems.
8. The sample size for the training set
- Not applicable. This is a physical dental device, not an AI/ML powered device that requires a "training set."
9. How the ground truth for the training set was established
- Not applicable. See point 8.
In summary, this document is for a traditional medical device (dental abutments), and thus the questions formulated for an AI/ML device do not directly apply. The acceptance criteria are based on established engineering and materials standards, and performance is demonstrated through non-clinical laboratory testing rather than clinical or observational studies on diagnostic performance.
Ask a specific question about this device
(79 days)
NobelProcera Zirconia Implant Bridge (previously cleared per K202452) The NobelProcera® Zirconia Implant Bridge are indicated for use as a bridge anatomically shaped and/or framework in the treatment of partially edentulous jaws for the purpose of restoring chewing function.
TiUltra Implants and Xeal Abutments (previously cleared per K202344) NobelActive TiUltra NobelActive TiUltra implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting tooth replacements to restore patient esthetics and chewing function. Nobel Active Tilltra implants are indicated for single or multiple unit restorations in splinted applications. This can be achieved by a 2-stage or 1-stage surgical technique in combination with immediate, early or delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. NobelActive TiUltra 3.0 implants are intended to replace a lateral incisor in the maxilla and/or a central incisor in the mandible. Nobel Active TiUltra 3.0 implants are indicated for single-unit restorations only. NobelReplace CC TiUltra NobelReplace CC TiUltra implants are endosseous dental implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. The NobelReplace CC TiUltra implants are indicated for single or multiple unit restorations. The NobelReplace CC Tilltra implants can be used in splinted or non-splications. The NobelReplace CC TiUltra implant may be placed immediately and put into immediate function provided that initial stability requirements detailed in the manual are satisfied. NobelParallel CC TiUltra NobelParallel CC TiUltra implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting replacements to restore patient esthetics and chewing function. NobelParallel CC TiUltra implants are indicated for single or multiple restorations in splinted applications. This can be achieved by a 2-stage or 1-stage surgical techniques in combination with immediate, early of delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. Implants with
Not Found
This document is a 510(k) premarket notification decision letter from the FDA to Nobel Biocare AG regarding their Dental Implant Systems Portfolio - MR Conditional. It explicitly states that the letter covers indications for use and general controls, but does not contain information about acceptance criteria or performance studies for the device itself.
Therefore, I cannot provide the requested information for the following reasons:
- Acceptance Criteria and Performance Data: The document is a regulatory clearance letter, not a clinical study report. It does not contain acceptance criteria for device performance, nor does it present any data from studies proving the device meets particular criteria. The letter confirms substantial equivalence to legally marketed predicate devices, which means the FDA has determined the device is as safe and effective as a previously cleared device, not that specific performance metrics were tested and met in a new study.
- Study Details (Sample size, data provenance, experts, adjudication, MRMC, Standalone, Ground Truth, Training Set): Since no performance study data is included in this FDA 510(k) clearance letter, none of these details can be extracted. The document refers to various previously cleared predicate devices (e.g., K202452, K202344, K181869), but it doesn't describe the studies that led to their clearance.
In summary, the provided text does not contain the information necessary to describe acceptance criteria or a study proving the device meets those criteria.
Ask a specific question about this device
(333 days)
TruBase S is a titanium component that is directly connected to endosseous dental implants to provide support for custom prosthetic restorations, such as copings or crowns. It is indicated for a screw-retained single tooth or cement-retained single tooth and bridge restorations. It is compatible with the following systems:
• NobelActive (K102436, K071370, K133731): 3.0, 3.5, 4.3, 5.0, 5.5 (3.0, NP, RP, WP)
All digitally designed abutments and/or copings for use with TruBase S are intended to be sent to a TruAbutmentvalidated milling center for manufacture.
TruBase S consists of a two-piece abutment, where the titanium base is a pre-manufactured abutment that will be used to support a CAD/CAM designed superstructure (the second part of the two-piece abutment) that composes the final abutment. The system also includes a TruBase S Screw for fixation to the implant body.
TruBase S abutments are made of titanium alloy conforming to ASTM F 136 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications and are provided in various prosthetic platform diameters (NobelActive 3.0, NP, RP, WP). The TruBase S Screws are composed of titanium alloy per ASTM F136.
They also feature:
- . cylindrical shape
- hexagonal indexing at the apical end of the connection ●
- indexing guide in the cementable portion for coping fitting ●
CAD/CAM customized superstructure that composes the final abutmentis intended to be sent to a TruAbutment-validated milling center to be designed and milled, according to the prosthetic planning and patient clinical situation. The superstructure is cemented to the TruBase S in the lab. Use "RelyX Unicem 2Automix" as an adhesive extra orally to connect.
TruBase S is provided non-sterile therefore must be sterilized after the cementation of the customized superstructure on the TruBase S.
The provided document describes a 510(k) premarket notification for a dental implant abutment, TruBase S. This type of submission focuses on demonstrating substantial equivalence to a predicate device, rather than proving novel clinical effectiveness. As such, the information you're looking for regarding AI-specific criteria, clinical study designs, human reader performance, or training set details associated with an AI-driven device is largely not present in this document.
However, I can extract the acceptance criteria and study details relevant to the mechanical performance and substantial equivalence of this medical device.
1. A table of acceptance criteria and the reported device performance
The acceptance criteria for mechanical performance are implicitly set by compliance with ISO 14801:2016 for fatigue testing. The document states that the test results "met the criteria of the standard." For design parameters, the acceptance criteria are substantial equivalence to the predicate device, K201197.
Acceptance Criteria Category | Specific Acceptance Criterion | Reported Device Performance |
---|---|---|
Material | Ti-6Al-4V ELI (ASTM F 136) for Abutment and Screw | Complies: TruBase S abutments are made of titanium alloy conforming to ASTM F 136. TruBase S Screws are composed of titanium alloy per ASTM F136. |
Design Parameters (CAD) | Minimum and Maximum abutment angle (°) : 0~15 | 0~15 |
Minimum and Maximum Cuff Height (mm): 0.5~5.0 | 0.5~5.0 | |
Minimum and Maximum diameter at abutment/implant interface (Ø, mm): 5.0~8.0 | 5.0~8.0 | |
Minimum Thickness (mm): 0.4 | 0.4 | |
Minimum and Maximum length of abutment post (length above the abutment collar/gingival height) (mm): 4.0~6.0 | 4.0~6.0 | |
Mechanical Performance | Fatigue testing according to ISO 14801:2016 requirements | "The results of the above tests have met the criteria of the standard." "The fatigue limit data for all other implant lines demonstrated the construct strengths to be sufficient for their intended use." |
Implant-to-abutment compatibility | "The testing demonstrated implant to abutment compatibility and has established substantial equivalency of the proposed device with predicate devices." (Through dimensional analysis and reverse engineering) | |
Sterilization | End User Steam Sterilization Test according to ISO 17665-1:2006, 17665-2:2009 and ANSI/AAMI ST79:2010. | Leveraged from predicate device (K201197), which performed these tests with results meeting criteria. TruBase S is provided non-sterile and must be sterilized. |
Biocompatibility | Biocompatibility tests according to ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010. | Leveraged from predicate device (K201197), which performed these tests with results meeting criteria. As the materials are the same (Ti-6Al-4V ELI and InCoris Zi), the biocompatibility is assumed to be equivalent. |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
The document does not specify a distinct "test set" in the context of an AI-driven device or clinical study. The testing performed was non-clinical mechanical performance testing on physical devices and based on technical specifications and design parameters.
- Sample Size: For the fatigue testing, the document mentions "worst-case constructs" were subjected to testing, and "the fatigue limit data for all other implant lines demonstrated the construct strengths to be sufficient." However, specific numerical sample sizes for these tests are not provided.
- Data Provenance: The data originates from internal non-clinical testing conducted by the manufacturer or accredited labs for mechanical and material properties. No country of origin is specified for these tests. The nature of these tests is prospective in the sense that they are conducted specifically for the submission, but they are not clinical studies.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not applicable. The device is a physical dental implant abutment, not an AI device that requires expert ground truth labeling for image analysis or diagnostic purposes. The "ground truth" for its performance is established through adherence to engineering standards (ISO 14801) and material specifications (ASTM F 136).
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not applicable. Adjudication methods like 2+1 or 3+1 are typically used in clinical trials or studies where human interpretation of data (e.g., medical images) is compared with an AI's output, often involving multiple experts to resolve discrepancies. This device's evaluation relies on objective mechanical and material testing, not human interpretation or adjudication.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
This information is not applicable. This device is a physical dental implant abutment and is not an AI-driven diagnostic or assistive device that would participate in an MRMC study.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
This information is not applicable. This device is a physical dental implant component, not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" for this medical device is based on:
- Material Specifications: Adherence to ASTM F 136 for titanium alloy.
- Engineering Standards: Compliance with ISO 14801:2016 for fatigue testing, and ISO 17665-1/2 and ANSI/AAMI ST79 for sterilization.
- Biocompatibility Standards: Compliance with ISO 10993 series.
- Dimensional and Design Parameters: Matching the design limits established by the predicate device and compatible OEM implant lines.
8. The sample size for the training set
This information is not applicable. There is no concept of a "training set" for this physical medical device. Manufacturing processes are based on established engineering principles and quality control, not machine learning training.
9. How the ground truth for the training set was established
This information is not applicable, as there is no training set for this physical medical device.
Ask a specific question about this device
(160 days)
Duranext Abutments are intended for use with dental implants as a support for single or multiple toth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
Duranext Abutments from Elegant Direct Corp. are a line of machinable blanks incorporating interface features compatible with eleven (11) endosseous dental implant system platforms (three (3) designs from two (2) manufacturers) and intended to be milled at an Elegant Direct Corp. validated milling center to produce patient-specific dental implant abutments. The subject device platform diameters range from 3.0 mm to 6.0 mm, and the corresponding compatible implant body diameters range from 3.0 mm to 6.0 mm.
Duranext Abutments are designed for fabrication of custom titanium alloy dental implant abutments by a CAD/CAM process. All patient-specific custom abutment fabrication is by prescription on the order of the clinician. The portion of each abutment available for milling is 9.5 mm in diameter and 20 mm long. The apical end is premanufactured to fit the compatible implant platform, as shown above, and is available in an engaging (anti-rotation) design. A feature at the coronal end of the abutment is provided to interface with the milling equipment. Each abutment is provided with a screw designed to fit the compatible implant. The patient-specific abutment is intended to support a cement-retained single crown or multi-unit restoration.
The provided document is a 510(k) summary for the Duranext Abutments, a dental device. It does not describe a study involving an AI algorithm or human-in-the-loop performance. Therefore, I cannot extract the information required for questions about AI performance, multi-reader multi-case studies, or specific details of ground truth establishment for AI training/testing.
However, I can provide information about the acceptance criteria and the non-clinical study that proves the device meets those criteria, as well as general device information.
Here's what can be extracted based on the document:
1. A table of acceptance criteria and the reported device performance
The document does not explicitly present a table of "acceptance criteria" in the format of a diagnostic test (e.g., sensitivity, specificity). Instead, substantial equivalence is claimed based on performance testing and comparison to predicate devices for mechanical properties, biocompatibility, and sterilization. The acceptance criteria are implicitly met by successful completion of these tests in accordance with relevant ISO standards.
Acceptance Criterion (implicitly met by standard) | Reported Device Performance (Summary) |
---|---|
Sterilization | Sterilization according to ISO 17665-1 (demonstrated readiness for sterilization) |
Biocompatibility | Biocompatibility according to ISO 10993-12 (for general requirements), and specifically ISO 10993-5 (cytotoxicity) |
Compatibility with OEM Implants | Reverse engineering of OEM implant bodies, OEM abutments, and OEM abutment screws (confirmed compatibility) |
Mechanical Strength / Dynamic Fatigue | Static compression and compression fatigue testing according to ISO 14801 (sufficient strength for intended use) |
Design Parameters (for CAD/CAM abutments) | Minimum wall thickness: 0.5 mm |
Minimum post height: 4.0 mm | |
Maximum abutment height from prosthetic platform: 20.0 mm | |
Maximum gingival height: 4.0 mm | |
Minimum gingival height: 0.5 mm | |
Angulation: 0° to 30° |
2. Sample size used for the test set and the data provenance (e.g., country of origin of the data, retrospective or prospective)
The document does not mention "test sets" in the context of diagnostic data. The "testing" refers to non-clinical performance testing of the physical abutment blanks. The sample sizes for these specific engineering tests (e.g., number of abutments tested for fatigue) are not provided in this summary. The provenance is implied to be from the manufacturer's testing or a contracted lab.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g., radiologist with 10 years of experience)
Not applicable, as this is a physical medical device (dental abutment) and the evaluation is based on non-clinical performance testing against engineering standards, not diagnostic interpretation by experts.
4. Adjudication method (e.g., 2+1, 3+1, none) for the test set
Not applicable. Adjudication methods like 2+1 or 3+1 are used for establishing ground truth in diagnostic studies, which is not what this document describes.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
Not applicable. This device is a dental abutment, not an AI-powered diagnostic tool. No MRMC study was conducted.
6. If a standalone (i.e., algorithm only without human-in-the-loop performance) was done
Not applicable. This device is not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" for this device's performance is established by engineering standards and physical measurements. For example:
- Biocompatibility: Established by adherence to ISO 10993 series standards, which involves methods like cytotoxicity testing.
- Mechanical Strength: Established by dynamic fatigue testing according to ISO 14801, which defines acceptable load cycles and failure modes.
- Dimensional Compatibility: Established by reverse engineering and direct measurement against OEM specifications.
8. The sample size for the training set
Not applicable. This device is not an AI algorithm, so there is no training set in the context of machine learning.
9. How the ground truth for the training set was established
Not applicable. As above, there is no training set. The "ground truth" for the device's design and manufacturing parameters is established via engineering specifications, material properties, and adherence to relevant ISO standards, rather than a labeled dataset.
Ask a specific question about this device
Page 1 of 4