Search Filters

Search Results

Found 751 results

510(k) Data Aggregation

    K Number
    K243834
    Manufacturer
    Date Cleared
    2025-08-25

    (255 days)

    Product Code
    Regulation Number
    872.3640
    Panel
    Dental
    Reference & Predicate Devices
    Why did this record match?
    510k Summary Text (Full-text Search) :

    . |
    | Regulatory Number / Name | 21 CFR 872.3630 Endosseous dental implant abutment. | 21 CFR 872.3630
    Endosseous dental implant abutment. | 21 CFR 872.3630 Endosseous dental implant abutment. | 21 CFR 872.3630
    | Class II | Class II | Class II | Same as Reference #6. |
    | Regulatory Number / Name | 21 CFR 872.3630
    Endosseous dental implant abutment | 21 CFR 872.3630 Endosseous dental implant abutment | 21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    NobelZygoma TiUltra implants

    The NobelZygoma TiUltra implants are endosseous dental implants intended to be surgically placed in the zygomatic bone to support a dental prosthesis in the upper arch, in order to restore patient esthetics and chewing function. The NobelZygoma Implants are appropriate for immediate loading when good primary stability is achieved and with appropriate occlusal loading.

    Multi-Unite Abutment Xeal Zygoma

    The Multi-unit Abutments Xeal Zygoma are indicated to support the placement of multiple unit, screw-retained prosthetic restorations in the maxilla including full arch dentures.

    NobelZygoma Multi-Unite Abutment Xeal Zygoma Screws

    The NobelZygoma Multi-Unit Abutment Screws are indicated for use to secure a dental abutment or framework to a dental implant for supporting tooth replacements and are indicated as an aid in prosthetic rehabilitation.

    Device Description

    The Subject Device NobelZygoma TiUltra Implant system is composed of three device lines: NobelZygoma TiUltra Implants, Multi-unit Abutments Xeal Zygoma and NobelZygoma Multi-unit Abutment Xeal Zygoma Screws.

    The NobelZygoma TiUltra Implants are endosseous dental implants surgically placed in the zygomatic bone to provide support for prosthetic devices. They are used with patients with severe bone resorption in the maxilla to provide multi-point support of the dental reconstruction. The NobelZygoma TiUltra Implants are used to support the rehabilitation of a fully or a partially edentulous maxilla. The Subject Devices are only intended for extra-maxillary placement.

    The subject Implants are made from unalloyed titanium grade 4 (ASTM F67) and present a two-level anodized surface with a soluble salt (protective) layer. Two variants of the Implants are available based on the collar angulation: the NobelZygoma 0° and the NobelZygoma 45° TiUltra Implants. The NobelZygoma 0° CC TiUltra Implants feature a conical connection platform with an internal hex (size RP). The NobelZygoma 45° Ext Hex TiUltra Implants include an external hexagonal platform (size RP).

    The NobelZygoma TiUltra implants are available in lengths ranging from 30 mm to 60 mm, in 2.5 mm increments. They feature a partially threaded design. The neck portion, measuring 3.6 mm from the platform, and the shaft portion which varies depending on the implant length, are unthreaded. For all implant lengths, threading consistently begins at the apex and extends 18 mm coronally.

    The NobelZygoma TiUltra Implants are co-packed with an implant mount, which is attached via a pre-assembled implant mount screw to the platform of the implant.

    The Multi-unit Abutments Xeal Zygoma are premanufactured prosthetic components intended to be connected to the compatible NobelZygoma TiUltra Implants to support the placement of a dental prosthesis.

    The Multi-unit Abutment (MUA) Xeal Zygoma are made from Titanium alloy (Ti-6Al-4V (90% titanium, 6% aluminum, 4% vanadium, ASTM F136) and feature a non-porous oxide layer with a soluble salt (protective) layer. The Multi-unit Abutments Xeal Zygoma are attached to the respective NobelZygoma TiUltra Implants by the compatible NobelZygoma Multi-unit Abutment Xeal Zygoma Screw.

    The Multi-unit Abutment Xeal Zygoma are available in four different angulations (straight or 0°, 17°, 45° and 60°) and in different heights ranging from 3 to 9mm (2mm increase). The 45° and 60° angulations are used with the NobelZygoma 0° TiUltra implants, while the Straight (or 0°) and 17° angulations are compatible with the NobelZygoma 45° TiUltra Implants. The 17° MUA is only available in two heights (3 and 5mm).

    The Multi-unit Abutments Xeal Zygoma are provided sterile and co-packed with the respective abutment handle and NobelZygoma Multi-Unit Abutments Xeal Zygoma Screw.

    The NobelZygoma Multi-unit Abutment Xeal Zygoma Screws are dental implant screws designed to fasten dental implant system components to a dental implant or to another component.

    The subject screws are made of titanium alloy (Ti-6Al-4V (90% titanium, 6% aluminum, 4% vanadium, ASTM F136) and are partially DLC-coated. They are available in different design and sizes to fit the different Multi-unit Abutments Xeal Zygoma. The Straight NobelZygoma Multi-unit Abutment Xeal Zygoma Screws are available in four sizes to fit the respective Straight Multi-Unit Abutment heights. The screws for the 45°/60° Multi-Unit Abutments and the 17° Multi-Unit Abutment are only available in one size that fits all abutment sizes.

    The NobelZygoma Multi-unit Abutment Xeal Zygoma Screws are co-packed with the compatible Mult-unit Abutment Xeal Zygoma and are also available separately.

    AI/ML Overview

    The provided document is a 510(k) Clearance Letter from the FDA for the "NobelZygoma TiUltra Implant system." This type of document primarily focuses on establishing substantial equivalence to previously cleared predicate devices, rather than explicitly detailing acceptance criteria and presenting a single, comprehensive study proving the device meets those criteria.

    However, the document does contain information about non-clinical and clinical testing performed to support the substantial equivalence claim. I will extract the relevant information to answer your questions to the best of my ability, acknowledging that not all requested details may be explicitly present in this type of regulatory submission summary.

    Here's a breakdown of the requested information based on the provided text:


    1. Table of Acceptance Criteria and Reported Device Performance

    Note: The document does not explicitly list acceptance criteria in a formal table with pass/fail values. Instead, it describes various tests performed and compares the subject device's performance to predicate devices or established standards. The "Reported Device Performance" column reflects the summary of findings from the validation studies described.

    Acceptance Criterion (Inferred from testing)Reported Device Performance (Summary of Findings)
    Mechanical Fatigue PerformancePerformed at least as well as the defined benchmark reference system in dynamic loading tests (ISO 14801 adapted for zygomatic implants and FDA Guidance).
    Implant Insertion TorqueSite preparation protocols allow seating implants with equal or less torque than the benchmark reference system.
    Magnetic Resonance (MR) SafetyLabeled as MR Conditional according to ASTM F2503, based on testing in accordance with relevant ASTM standards and FDA Guidance.
    BiocompatibilityVerified in accordance with ISO 10993-1 series and FDA Guidance.
    Packaging PerformanceValidated as intended (maintains integrity after simulated transportation and distribution) in accordance with ISO 11607-1, ISO 11607-2, ASTM D4169, ASTM D4332, ASTM F1886, ASTM F2096.
    Shelf-lifeConfirmed at 5 years in accordance with ASTM F1980.
    Sterilization ValidationConducted in accordance with ISO 11137-1, ISO 11137-2, ISO 11137-3, AAMI TIR29, and AAMI TIR 35. Achieved SAL 10-6.
    Endotoxin PyrogenicityEndotoxin limit respected through LAL test according to United States Pharmacopeial Convention; periodic monitoring done as per AAMI ST72.
    Surface Modification/RoughnessComparative roughness verification (WLI) confirmed the subject devices exhibit a rougher surface at the collar/shaft compared to Reference Device #3. Within roughness range of Reference Device #7 (which has a similar surface technology).
    Clinical Performance / Implant SurvivalMultiple clinical studies and RWE show implant survival rates generally above 90% and up to 100% for various zygomatic implant configurations (including predicate/reference devices). Post-market surveillance data for subject devices showed similar performance in osseointegration complaint rates compared to NobelZygoma TiUnite implants. TiUltra implants overall showed a mean survival rate of 99.5%.
    Clinical Adverse EventsReported adverse events (e.g., implant failure, soft tissue recession, inflammation, sinusitis, hematomas, paresthesia, orbital cavity penetration, screw/prosthesis fracture) were managed with appropriate treatments and did not raise new questions of safety and effectiveness, or were comparable to known predicates.

    2. Sample Size Used for the Test Set and Data Provenance

    • Test Set Sample Size: The document does not provide specific sample sizes for the non-clinical tests (fatigue, torque, MR, biocompatibility, packaging, sterilization, endotoxin, surface roughness). These are typically determined by relevant standards.
      • For clinical published literature, the sample sizes varied:
        • Three studies on non-full arch applications involved 176 similar zygomatic implants.
        • Systematic literature review on quad configuration reported data for a mean implant survival rate (implies a larger, unspecified number of cases).
        • Two clinical studies involving Nobel Biocare zygomatic implants: n=15 (minimum 79 months follow-up) and n=302 (mean 7.9 years follow-up).
        • A total of 40 clinical publications were provided to support the established history of safe clinical use (number of implants/patients unspecified in this summary).
        • Seven clinical cases with a total of 16 NobelZygoma TiUltra implants were presented.
        • 36 clinical publications on NobelReplace and TiUltra implant family (number of implants/patients unspecified in this summary).
    • Data Provenance:
      • Clinical Studies: Published literature (implies peer-reviewed, multi-center, potentially international data).
      • Real-world evidence (RWE): Post-market surveillance for the Subject Devices from July 2024 to May 2025. This is prospective data specific to the subject device after initial market introduction (likely under a different clearance or within a broader market).
      • Clinical Case Studies: Seven cases presented directly by the submitter.
      • The document implies that data from various regions would be included in "published literature" and "post-market surveillance." No specific countries of origin are mentioned beyond "Nobel Biocare" (Sweden/Switzerland) and "Southern Implants (Pty) Ltd" (implies South Africa). The nature of most clinical data is retrospective (published studies, post-market surveillance).

    3. Number of Experts Used to Establish the Ground Truth for the Test Set and Their Qualifications

    The document does not specify the number of experts used to establish ground truth for the test set (clinical studies). Clinical studies typically rely on diagnoses and assessments made by treating clinicians (dental surgeons, prosthodontists) based on established medical practices and diagnostic criteria, rather than a separate "ground truth" panel for the study itself, unless it's a specific adjudication or consensus study. Such details are usually found within the full study protocols and reports, which are not part of this 510(k) summary.


    4. Adjudication Method (e.g., 2+1, 3+1, none) for the Test Set

    The document does not specify any adjudication methods for the clinical data presented. This information would typically be detailed in the methodology sections of the individual clinical studies or systematic reviews referenced, which are not provided in this summary.


    5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study was Done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    The document describes a dental implant system (hardware), not an AI-powered diagnostic or assistive tool. Therefore, a Multi-Reader Multi-Case (MRMC) comparative effectiveness study focusing on human reader improvement with/without AI assistance is not applicable and was not performed.


    6. If a Standalone (i.e. algorithm only without human-in-the loop performance) was done

    This question is not applicable as the device is a dental implant system, not an algorithm.


    7. The Type of Ground Truth Used (expert consensus, pathology, outcomes data, etc.)

    • Non-Clinical Tests: Ground truth is based on established engineering and materials science principles, international standards (ISO, ASTM), and FDA guidance documents. Performance is evaluated against these benchmarks.
    • Clinical Performance Data: Ground truth is primarily based on outcomes data, specifically:
      • Implant survival rate: Directly reported as percentage (e.g., 97.4%, 100%, 89.9%, 99.5%).
      • Reported adverse events and complications: Clinical observations and diagnoses by treating dentists/surgeons. Resolution of these events are considered outcomes.
      • Osseointegration: Inferred from success rates and lack of failure/complaints related to implant stability.
      • Patient esthetics and chewing function: These are indications, and clinical data indirectly supports their achievement through successful implant function.

    8. The Sample Size for the Training Set

    The concept of a "training set" is typically associated with machine learning or AI algorithms. Since this is a physical medical device (dental implant system), it primarily relies on engineering design, materials science, and clinical validation. Therefore, a "training set" in the context of an algorithm is not applicable. The development and testing would involve design iterations and validation studies, but not an algorithmic training process with a distinct training set.


    9. How the Ground Truth for the Training Set Was Established

    As noted in point 8, the concept of a "training set" in the context of an AI/ML algorithm is not applicable to this physical device. Therefore, the establishment of ground truth for such a set is also not applicable. The "ground truth" for the device's design and performance validation is derived from established scientific principles, pre-clinical testing, and clinical outcomes for the device itself and its predicates.

    Ask a Question

    Ask a specific question about this device

    K Number
    K251471
    Date Cleared
    2025-08-20

    (99 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Why did this record match?
    510k Summary Text (Full-text Search) :

    SPAIN

    Re: K251471
    Trade/Device Name: IPD Dental Implant Abutments
    Regulation Number: 21 CFR 872.3630
    ENDOSSEOUS DENTAL IMPLANT ABUTMENT
    Classification Name: Endosseous Dental Implant Abutment (21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    IPD Dental Implant Abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for single or multiple dental prosthetic restorations.

    Device Description

    IPD Dental Implant Abutments is a dental implant abutment system composed of dental abutments, screws, as well as other dental abutment accessories, intended to be placed into dental implants to provide support for dental prosthetic restorations.

    Abutments provide basis for single or multiple tooth prosthetic restorations. They are available in a variety of connection types to enable compatibility with commercially available dental implants systems.

    IPD Dental Implant Abutments includes the following categories of dental abutment designs:

    • Titanium base (Interface) abutments (INC3D);
    • Multi-Unit abutments (MUA);
    • Overdenture Abutments (PSD);
    • Temporary Abutments (PP);
    • Healing Abutments (TC).

    The system also includes the use of the corresponding screws intended to attach the prosthesis to the dental implant. Specifically:

    • Ti Screw (TT): Used during restoration fabrication.
    • TiN Screw (TTN): Used in finished restorations, with TiN coating.
    • TPA Screw (TPA): Used in finished angulated restorations, with TiN coating.

    The metallic components of the subject abutments and screws are made of titanium alloy conforming to ISO 5832-3 "Implant for surgery – Metallic materials – Part 3: Wrought titanium 6-aluminium 4-vanadium alloy".

    The purpose of this submission is to expand IPD Dental Implant Abutments offerings with:
    • New IPD's compatible dental implant systems,
    • New angulations available abutment-category specific.
    • New in-house TiN coating.

    IPD dental implant abutments and screws are compatible with the following commercially available dental implant systems:
    (Table 2. Summary of IPD abutments categories with compatibilized OEM Implant/Abutment Systems with specific reference to maximum angulation specifically included in this submission. provided in original text)

    Ti Base (Interface) abutments are attached (screw-retained) to the implant/abutment and cemented to the zirconia superstructure.

    The Ti Base is a two-piece abutment composed of the titanium component, as the bottom-half, and the zirconia superstructure, as the top-half. It consists of a pre-manufactured prosthetic component in Titanium alloy per ISO 5832-3, as well as the supporting digital library file for FDA-cleared design software (3Shape Abutment Designer™ Software, cleared under K151455) which enables the design of a patient-specific superstructure by the laboratory/clinician and which will be manufactured in FDA-cleared Zirconia (e.g., DD Bio Z, K142987) according to digital dentistry workflow at the point of care, or at a dental laboratory.

    The design and fabrication of the zirconia superstructure for Ti Base (Interface) will be conducted using a digital dentistry workflow requiring the use of the following equipment, software and materials:
    Scanner: 3D Scanner D850.
    Design Software: 3Shape Abutment Designer Software, K151455.
    Zirconia Material: DD Bio Z, K142987.
    Milling machine/Brand: Dental Concept System Model: DC1 Milling System.
    Cement: Multilink® Automix, K123397.

    Ti Base (Interface) abutment design parameters for the zirconia superstructure are defined as follows:
    Minimum gingival height: 1.5 mm
    Minimum wall thickness: 0.43 mm
    Minimum post height for single-unit restorations: 4.75 mm (1)
    Maximum gingival height: 6.0 mm
    Maximum angulation of the final abutment 30° (2)

    The resulting final prosthetic restoration is screwed to the dental implant. All subject abutments are single-use and provided non-sterile. Final restoration (which includes the corresponding screw) is intended to be sterilized at the dental clinic before it is placed in the patient.

    AI/ML Overview

    The provided FDA 510(k) clearance letter pertains to IPD Dental Implant Abutments, a medical device, not an AI/ML-driven software product. Therefore, the information requested regarding acceptance criteria and study data for an AI/ML device (e.g., sample size for test/training sets, expert ground truthing, MRMC studies, standalone performance) is not applicable to this document.

    The document describes the device, its intended use, comparison to predicate devices, and the non-clinical performance testing conducted to demonstrate substantial equivalence. These tests are physical and chemical in nature, not related to the performance of an AI/ML algorithm.

    Here's a breakdown of why an AI/ML-focused response is not possible, based on the provided text:

    • Device Type: The device is "IPD Dental Implant Abutments," which are physical components used in dentistry (titanium alloy abutments, screws, designed for zirconia superstructures). It is not software, a diagnostic imaging tool, or an AI/ML algorithm.
    • Purpose of Submission: The submission aims to expand compatibility with new dental implant systems and include new angulations and in-house TiN coating. This is a modification of a physical medical device, not a new AI/ML development.
    • Performance Data (Section VII): This section explicitly lists non-clinical performance testing such as:
      • Sterilization validation (ISO 17665-1)
      • Biocompatibility testing (Cytotoxicity, Sensitization, Irritation per ISO 10993)
      • Reverse engineering and dimensional analysis for compatibility
      • Validation of the digital workflow and software system (but this refers to the CAD/CAM software used to design the physical abutments, not an AI/ML diagnostic tool)
      • Static and dynamic fatigue testing (ISO 14801)
      • Modified Surfaces Information
      • MRI safety review

    Conclusion:

    The provided document describes a 510(k) clearance for a physical dental implant component. It does not contain any information about the acceptance criteria or study design for an AI/ML driven medical device. Therefore, a table of acceptance criteria and reported device performance related to AI/ML, sample sizes for test/training sets, details on expert ground truthing, MRMC studies, or standalone performance of an algorithm cannot be extracted from this text.

    Ask a Question

    Ask a specific question about this device

    K Number
    K250721
    Manufacturer
    Date Cleared
    2025-08-20

    (163 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Why did this record match?
    510k Summary Text (Full-text Search) :

    Re: K250721
    Trade/Device Name: LOCATOR® Angled Abutment
    Regulation Number: 21 CFR 872.3630
    Re: K250721
    Trade/Device Name: LOCATOR® Angled Abutment
    Regulation Number: 21 CFR 872.3630
    LOCATOR Angled Abutment
    Common Name: Dental Implant Abutment
    Regulation Number: 21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The LOCATOR Angled Abutment is indicated for the attachment of full or partial, fixed and removable restorations retained by endosseous implants to restore masticatory function for the patient.

    Device Description

    The purpose of this submission is to expand the Indications for Use of the LOCATOR® Angled Abutment product line (K243272 & K233587) by adding compatibility of existing abutments with various new dental implant systems from Implant Direct and Biohorizons. Additionally, the submission expands the Indications for Use of the product line with a modified version of the predicate device shown to be compatible with the Implant Logistics Implant-One Series 300 and Series 400 Implant Systems. The LOCATOR Angled Abutment is designed and intended for the attachment of full or partial, fixed and removable, restorations retained by endosseous implants in the mandible or maxilla, as cleared to be used with LOCATOR FIXED (K213391) and LOCATOR Attachment Systems (K072878).

    The LOCATOR Angled Abutments are manufactured from titanium (Ti-6Al-4V) and are titanium nitride (TiN) coated in various abutment heights, identical to the predicate device. The LOCATOR Angled Abutment interfacing features are provided at a 15 degree angle to allow for angle correction, substantially equivalent to the predicate device of K233587 and K243272. The abutments will be used with the accessories of the LOCATOR Implant Attachment System (retention inserts, denture attachment housing, and ancillary processing parts) and LOCATOR FIXED Attachment System (fixed inserts, denture attachment housing) for the attachment of a restoration, identical to the predicate device.

    AI/ML Overview

    The provided document is an FDA 510(k) clearance letter for the LOCATOR® Angled Abutment, K250721. This document primarily focuses on demonstrating substantial equivalence to a predicate device and expanding indications for use, rather than detailing a study that proves the device meets specific performance acceptance criteria for a new clinical application.

    Therefore, much of the requested information regarding study design, sample sizes, expert involvement, and ground truth establishment (which are typical for AI/ML device clearances or those requiring extensive clinical performance data) is not present in this type of regulatory submission for a dental implant abutment.

    However, based on the information provided, I can construct a table for the acceptance criteria and reported "performance" in the context of this 510(k) submission, which is primarily a demonstration of mechanical compatibility and safety rather than a clinical efficacy study.

    Here's an interpretation based on the provided text:


    Overview of Device Performance and Acceptance Criteria (as per the 510(k) Submission)

    The LOCATOR® Angled Abutment (K250721) is a dental implant abutment. The "study" proving it meets acceptance criteria in this context is a series of non-clinical tests and engineering analyses demonstrating its compatibility with various dental implant systems and confirming its mechanical properties and biocompatibility are substantially equivalent to previously cleared devices. The acceptance criteria are implicitly met by showing conformance to established standards and similarity to predicate devices.

    1. Table of Acceptance Criteria and Reported Device Performance

    Acceptance Criteria CategorySpecific Acceptance Criteria (Implicit)Reported Device Performance / Evidence Provided
    Material CompositionConformance to ASTM F136 for Ti-6Al-4V ELI (Titanium alloy) and presence of TiN coating.Manufactured from Ti-6Al-4V ELI (ASTM F136 compliant) with TiN coating, "identical to the predicate device."
    Mechanical Strength & Fatigue (Worst-Case)Withstand fatigue loading per ISO 14801:2016 for tallest abutment cuff height with smallest diameter OEM implant.Fatigue testing conducted per ISO 14801:2016 for worst-case scenarios. Implicitly, the device passed. For Implant Logistics, existing 510(k) (K173701, K102822) required ISO 14801 testing, and the current design "does not create a new worst case."
    BiocompatibilityConformance to ISO 10993-1 and ISO 10993-5 (cytotoxicity).Biocompatibility assessed per ISO 10993-1 and ISO 10993-5, leveraging prior testing (K072878, K233587). Implicitly, the device is biocompatible.
    Packaging & Shipping IntegrityPackaging and device remain undamaged after validation testing.Packaging and shipping validation testing completed; "worst case device and packaging were undamaged."
    Cleaning & Sterilization ValidationDevice can be effectively cleaned and sterilized, identical to predicate, without creating new worst-case.Cleaning and sterilization "identical to the predicate device," leveraging prior results (K233587, K243272). Engineering analysis established no new worst-case.
    MR Compatibility (Safety in MR Environment)Conformance to ASTM standards (F2052, F2213, F2182, F2119) and FDA guidance for MR safety (Force, Torque, Heating, Image Quality).MR compatibility testing conducted per specified ASTM standards and FDA guidance on Ti-6Al-4V components with similar features, leveraging prior results. Engineering analysis showed no new worst-case.
    Implant Compatibility (Functional)Proper fit and function with specified new implant systems.Critical features and tolerances verified functionally in OEM implants through "engineering analysis" and "cooperatively with the implant manufacturer (OEM)." The design for Implant Logistics systems was made "according to the manufacturer's specifications."

    2. Sample Size Used for the Test Set and Data Provenance

    • Sample Size: Not explicitly stated as "sample size" in the conventional sense for a clinical trial. For physical testing (fatigue, packaging), standard engineering test specimen numbers would have been used, but these are not detailed. For material and biocompatibility, existing data was leveraged. Functional compatibility was primarily through engineering analysis.
    • Data Provenance: The data comes from in-vitro non-clinical testing and engineering analyses conducted by the manufacturer, Zest Anchors, LLC, or leveraged from previous submissions (K243272, K233587, K213391, K072878, K173701, K102822). The origin is the manufacturer's internal testing and regulatory submissions. The nature of these tests is "retrospective" in the sense that results from previous validated tests (e.g., K233587 for TiN coating, K072878 for biocompatibility) are being applied ("leveraged") to demonstrate equivalence for the current device, implying these tests were performed in the past.

    3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications

    • Number of Experts: Not applicable. For this type of device (dental abutment) and submission (510(k) for expanded compatibility), "ground truth" is established through engineering specifications, material standards, and validated physical/mechanical testing protocols (e.g., ISO, ASTM). It does not involve human expert consensus on clinical images or patient outcomes.
    • Qualifications of Experts: N/A, as the "ground truth" is based on objective, standardized physical and material properties, confirmed by engineering analysis.

    4. Adjudication Method for the Test Set

    • Adjudication Method: Not applicable. This is not a study requiring human adjudication of results. Engineering and laboratory tests have objective pass/fail criteria or conformance to standards.

    5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study

    • MRMC Study Done? No. MRMC studies are typically for AI/ML devices where human readers interpret diagnostic images. This device is a physical dental implant component.
    • Effect Size of Human Readers Improvement: Not applicable.

    6. Standalone Performance Study (Algorithm Only)

    • Standalone Performance Study Done? No. This device is a physical medical device, not an algorithm.

    7. The Type of Ground Truth Used

    • Type of Ground Truth: The "ground truth" for this device's "performance" and "acceptance" is based on:
      • Engineering specifications and drawings: Ensuring physical compatibility (e.g., fit with implants).
      • International Standards: Conformance to mechanical testing standards (ISO 14801:2016 for fatigue), material standards (ASTM F136), and biocompatibility standards (ISO 10993 series).
      • Predicate device performance: Demonstrating that the subject device's design, materials, and performance characteristics are "identical" or "substantially equivalent" to previously cleared devices.

    8. The Sample Size for the Training Set

    • Sample Size for Training Set: Not applicable. This is not an AI/ML device that requires a training set.

    9. How the Ground Truth for the Training Set Was Established

    • How Ground Truth Established: Not applicable.
    Ask a Question

    Ask a specific question about this device

    K Number
    K251220
    Manufacturer
    Date Cleared
    2025-07-28

    (98 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Reference & Predicate Devices
    Why did this record match?
    510k Summary Text (Full-text Search) :

    K251220**
    Trade/Device Name: NUVENTUS NV.C™ Prosthetic Components
    Regulation Number: 21 CFR 872.3630
    Abutments
    Classification Name: Endosseous Dental Implant Abutments
    Regulation Number: 21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    NUVENTUS NV.C™ HEALING COMPONENTS
    NUVENTUS NV.C™ healing components are indicated to be placed in fully or partially edentulous patients after implant placement. The healing components protect the inner configuration of the implant and form, maintain, and stabilize the soft tissue during the healing process. Healing components have a maximum duration of usage of 180 days.

    NUVENTUS NV.C™ TEMPORARY PROSTHETIC COMPONENTS
    NUVENTUS NV.C™ temporary prosthetic components are indicated to be used prior to the insertion of the final components to maintain, stabilize and shape the soft tissue during the healing phase. They must not be placed in occlusion. Temporary prosthetic components have a maximum duration of usage of 180 days.

    NUVENTUS NV.C™ MULTI-UNIT ABUTMENTS
    NUVENTUS NV.C™ Multi-unit Abutments are indicated to be placed into NUVENTUS NV.C™ dental implants to provide a support structure for the functional and esthetic oral rehabilitation of fully or partially edentulous patients with bridges or full-arch prostheses.

    NUVENTUS NV.C™ FINAL PROSTHETIC
    NUVENTUS NV.C™ Multi-unit Final Coping is connected to the endosseous dental implant via multi-unit abutment and are indicated for use as an aid in prosthetic rehabilitations in fully or partially edentulous patients with bridges or full-arch prostheses.

    Device Description

    The NUVENTUS NV.C™ Prosthetic Components product portfolio consists of NUVENTUS NV.C™ Healing Components, NUVENTUS NV.C™ Temporary Prosthetic Components, NUVENTUS NV.C™ Multi-unit Abutments, and NUVENTUS NV.C™ Final Prosthetic. NUVENTUS NV.C™ Prosthetic Components product portfolio are intended to be used with the NUVENTUS NV.C™ Dental Implant System (K233081).

    NUVENTUS NV.C™ HEALING COMPONENTS
    NUVENTUS NV.C™ Healing Components may come in different designs, either with cap or screw portion machined as one piece or with an integrated occlusal screw. Different shapes, transmucosal heights are available. Healing components are components that cover the implant or abutment platform and prevent tissue overgrowth during the healing phase of the implant. The threaded portion of the healing components fits inside the internal threads of the implant or abutment, while the head of the healing components covers the top surface of the implant (the implant head) or abutment.

    NUVENTUS NV.C™ TEMPORARY PROSTHETIC COMPONENTS
    The NUVENTUS NV.C™ Temporary Prosthetic Components line consists of abutments and copings which are used for the restoration of NUVENTUS NV.C™ Dental Implants of different types, endosteal diameters, lengths and platforms. They are available in a variety of shapes and sizes to fit individual patient needs.

    NUVENTUS NV.C™ MULTI-UNIT ABUTMENTS
    NUVENTUS NV.C™ Multi-unit Abutments are premanufactured dental abutments used for restoration of NUVENTUS NV.C™ Dental Implant of different diameters and lengths. The Multi-unit Abutments are available in NP and RP platform sizes; 0°, 17° and 30° angulations; various transmucosal heights and hexagonal index orientations. Multi-unit Abutments are co-packed with abutment carrier and screw. The abutments are delivered sterile for immediate use.

    NUVENTUS NV.C™ FINAL PROSTHETIC
    The NUVENTUS NV.C™ Final Prosthetic line consists of abutments and copings which are used for the restoration of NUVENTUS NV.C™ Dental Implants of different types, endosteal diameters, lengths and platforms. They are available in a variety of shapes and sizes to fit individual patient needs.

    AI/ML Overview

    The provided FDA 510(k) Clearance Letter for NUVENTUS NV.C™ Prosthetic Components does NOT describe a device that uses AI or machine learning. It describes conventional prosthetic components for dental implants.

    Therefore, the requested information regarding "acceptance criteria and the study that proves the device meets the acceptance criteria" in the context of AI/ML performance metrics (such as sensitivity, specificity, MRMC studies, ground truth establishment, etc.) is not applicable to this document.

    The document focuses on demonstrating substantial equivalence to predicate devices through non-clinical performance data, including:

    • MRI Safety: Evaluation of components in an MR environment based on scientific rationale and published literature, addressing magnetically induced displacement force and torque per FDA guidance.
    • Sterilization Validation:
      • Gamma irradiation validation (25 kGy dose) for sterile components according to ISO 11137-1 and ISO 11137-2.
      • Bacterial endotoxin testing (LAL test) according to ANSI/AAMI ST72 (
    Ask a Question

    Ask a specific question about this device

    K Number
    K241183
    Device Name
    ISO Abutment
    Date Cleared
    2025-07-28

    (455 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Why did this record match?
    510k Summary Text (Full-text Search) :

    Irvine, California 92612

    Re: K241183
    Trade/Device Name: ISO Abutment
    Regulation Number: 21 CFR 872.3630
    name:** Dental implant abutment
    Classification name: Endosseous dental implant abutment, 21CFR 872.3630
    Predicate Devices:

    Primary predicate device -
    Kerator, K112787 (Product Code: NHA, 21CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The ISO Abutment is appropriate for use with overdentures or partial dentures retained in whole or in part by endosseous implants in the mandible or maxilla. The ISO Abutment is compatible with the following fixtures.

    Device Description

    The ISO Abutment is to be placed into the dental implant to provide support for a prosthetic restoration. The ISO Abutment is made from Titanium grade Ti-6AI-4V ELI (meets ASTM Standard F-136) and compatible with several fixtures made by 3rd party implant manufactures.

    AI/ML Overview

    This 510(k) clearance letter details the regulatory approval for the ISO Abutment, an endosseous dental implant abutment. It establishes its substantial equivalence to a predicate device based on similar indications for use, technological characteristics, materials, design, and sterilization methods.

    However, the provided document does not contain information related to software, artificial intelligence (AI), diagnostic accuracy studies, or clinical performance data typically associated with acceptance criteria tables, sample sizes for medical imaging datasets, expert adjudication, or MRMC studies. The device itself is a physical dental implant component, not an AI-powered diagnostic tool.

    Therefore, I cannot extract the requested information regarding:

    • A table of acceptance criteria and reported device performance (as these would be mechanical and biocompatibility tests, not diagnostic accuracy metrics)
    • Sample sizes used for the test set and data provenance (not applicable for this type of device)
    • Number of experts used to establish ground truth and qualifications (not applicable)
    • Adjudication method (not applicable)
    • MRMC comparative effectiveness study (not applicable)
    • Standalone (algorithm-only) performance (not applicable)
    • Type of ground truth used (e.g., pathology, outcomes data - not applicable for this device beyond engineering/material testing)
    • Sample size for the training set (not applicable)
    • How the ground truth for the training set was established (not applicable)

    The "Non-clinical Tests" section (Page 13) describes the types of studies performed for a physical device, which include:

    • Sterilization validation testing (ISO 17665-1 & 2)
    • Biocompatibility tests (ISO 10993-5, -10, -11, -3, -33) including:
      • Cytotoxicity
      • Oral mucosa irritation
      • Skin sensitization
      • Acute systemic toxicity
      • Subchronic systemic toxicity
      • Bacterial reverse mutation
    • Reverse engineering analysis of OEM implant body, abutment, and fixation screw (for compatibility verification)
    • TiN coating tests (F1044, F1147, F1160)
    • Non-clinical worst-case MRI review (using scientific evidence and published literature) to assess magnetic induction displacement force (ASTM F2052), magnetic induction torque (ASTM F2213), RF induction heating (ASTM F2182), and image artifact (ASTM F2119).

    These tests establish the physical, mechanical, and biological safety and compatibility of the dental abutment, rather than the diagnostic performance of an AI system.

    Ask a Question

    Ask a specific question about this device

    K Number
    K251297
    Date Cleared
    2025-07-24

    (87 days)

    Product Code
    Regulation Number
    N/A
    Panel
    Dental
    Reference & Predicate Devices
    Why did this record match?
    510k Summary Text (Full-text Search) :

    Classification Name:** Implant, Endosseous, Root-Form

    • Common Name: Dental implant
    • CFR Number: 872.3630
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    MIS Dental Implant System is intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as artificial teeth, in order to restore masticatory function. When a one-stage surgical procedure is applied, the implant may be immediately loaded when good primary stability is achieved and the occlusal load is appropriate. Narrow implants (Ø3.3mm) are indicated for use in surgical and restorative applications for placement only in the mandibular central, lateral incisor and maxillary lateral incisor regions of partially edentulous jaws, to provide support for prosthetic devices such as artificial teeth. Mandibular central and lateral incisors must be splinted if using two or more narrow implants adjacent to one another. MIS LYNX short implants are indicated for delayed loading only.

    Device Description

    The two additional implant size offerings which are being added to the predicate MIS LYNX Conical Connection Dental Implant System (K241692), and are the subject of this submission, consist of a standard platform, 4.20 mm diameter implant and a wide platform, 5.00 mm diameter implant, each available in a 6 mm length.

    The proposed implant offerings, as their predicate K241692, are root-form, bone-level, self-tapping, two-piece, screw-type implants which are intended for one- or two-stage dental implant procedures and are used in the upper or lower jaw for supporting tooth replacement to restore chewing function.

    Each implant offering is provided with a compatible cover screw based on the implant platform (standard and wide). The cover screws are identical to those cleared in K241692 and are intended to be used in a two-stage surgical procedure as temporary components to the proposed endosseous implant to allow healing of the soft tissue. The cover screw is screwed into the implant's internal thread and the gums are sutured over the cover screw. The cover screw's purpose is to let the osseointegration begin without any forces being applied to the implant. After a healing period, the cover screw is exposed and is then removed and replaced by either a healing cap or an abutment.

    The implants and cover screws are manufactured from titanium alloy (Ti-6Al-4V ELI complying with standard ASTM F136-13 - Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant).

    The proposed implants feature an outer profile which has a coronal section which is cylindrical and an apical section which is conical. The outer threads are designed so the implant has a self-drilling property. The implant's geometric design includes a dual thread feature and spiral channels (flutes) stemming from the apex. These spiral channels are designed to enable insertion torque reduction when applying reverse torque. The proposed implant design also includes circumferential grooves at the coronal area which are called "micro-rings". These horizontal micro-rings are designed to increase the BIC (Bone to Implant Contact) of the implant with the bone. The proposed implants feature a round (cylindrical) neck.

    The proposed MIS LYNX Conical Connection Implants have a conical connection with an anti-rotation index of six positions and an internal thread for cover screws, screw-retained abutments and screwed healing caps. The implant-abutment connection surface of the proposed implants is anodized for color coding purposes to indicate the platform: purple for standard platform implants, and green for wide platform implants. The cover screws are also anodized for platform color coding.

    The proposed implants are packaged in either a dry or wet package. Implants packaged in the wet packaging configuration are packaged in NaCl solution and are not anodized. The liquid environment is intended to maintain the super-hydrophilic (contact angle exhibited by water in contact with the surface is equal to zero degrees) property of the proposed dental implants until the implants are installed in patients.

    AI/ML Overview

    This 510(k) clearance letter pertains to an Endosseous Dental Implant System, which is a physical medical device, not a software-driven AI device. Therefore, the concepts of acceptance criteria, study data, expert adjudication, MRMC studies, standalone algorithm performance, ground truth establishment for AI models, and training set sizes are not applicable to the information provided.

    The document focuses on demonstrating substantial equivalence to predicate devices rather than proving performance against specific acceptance criteria in the context of an AI-driven system. The "acceptance criteria" here are implicitly the standards and performance levels demonstrated by the predicate and reference devices, as well as relevant ISO and ASTM standards.

    Here's an analysis of the provided information, framed as closely as possible to your request, but acknowledging the device type:


    Device: MIS LYNX Conical Connection Implant System

    This device is an endosseous dental implant system, a physical medical device. The FDA clearance is based on demonstrating substantial equivalence to legally marketed predicate devices, not on the performance of an AI algorithm. Therefore, many of the requested fields related to AI model evaluation are not applicable.

    Acceptance Criteria and Reported Device Performance

    The acceptance criteria are generally understood to be compliance with relevant international and national standards for dental implants, and performance comparable to or exceeding established predicate/reference devices.

    Table of Acceptance Criteria (Inferred from testing) and Reported Device Performance:

    Acceptance Criteria (Inferred)Reference Standard / BasisReported Device Performance
    Mechanical Fatigue StrengthISO 14801:2016, FDA Guidance"confirms that the proposed device is similar in or exceeds performance when compared to the predicate (K241692) and reference (K180282) devices."
    Bone-to-Implant Strength (Pull-out)ASTM F543-23 Annex 3"the proposed device exhibited average pull-out forces which were larger than those of the reference device (K180282)."
    MR Safety (Magnetically induced displacement force)ASTM F2052-21Leveraged from predicate (K241692), device is labeled MR Conditional.
    MR Safety (Magnetically induced torque)ASTM F2213-17Leveraged from predicate (K241692), device is labeled MR Conditional.
    MR Safety (Image Artifact)ASTM F2119-07 (2013)Leveraged from predicate (K241692), device is labeled MR Conditional.
    MR Safety (RF Induced Heating Simulation)Computational modeling and simulation (CM&S)Leveraged from predicate (K241692), device is labeled MR Conditional.
    Surface Area (Bone Contact)CAD Software Analysis"the implant surface area and initial bone-to-implant contact area calculations, simulating the recommended surgical drilling protocol in a CAD model, is equivalent between proposed and reference (K180282) implants of the same length and diameter."
    BiocompatibilityN/A - Leveraged from predicate"additional biocompatibility... testing was not necessary to demonstrate substantial equivalence of the proposed device" due to identical materials and manufacturing processes.
    SterilizationN/A - Leveraged from predicate"additional... sterilization... testing was not necessary" due to identical processes.
    Package and Shelf lifeN/A - Leveraged from predicate"additional... package and shelf life testing was not necessary" due to identical materials and processes.

    Regarding the other requested information (primarily relevant to AI/Software-as-a-Medical-Device):

    1. Sample size used for the test set and the data provenance: Not applicable. The testing done was laboratory-based mechanical and MR safety testing, not evaluation of an AI model with a clinical test set. The implant dimensions analyzed for surface area were "smallest implant length (6 mm) and diameter (4.20 mm)" for proposed and reference devices. Pull-out testing and fatigue testing would have involved a number of physical samples per test, but specific quantities are not detailed in this summary.

    2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts: Not applicable. Ground truth as typically understood for AI (e.g., expert labels on medical images) is not relevant here. The "ground truth" for mechanical testing is established by physical measurements and engineering principles.

    3. Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable.

    4. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable. This is a physical dental implant, not an AI assistance system for human readers.

    5. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done: Not applicable.

    6. The type of ground truth used (expert consensus, pathology, outcomes data, etc): For mechanical properties, the "ground truth" is derived from established engineering test methods and their performance metrics (e.g., load at failure, cycles to failure). For MR safety, it's compliance with established safety limits for magnetic fields.

    7. The sample size for the training set: Not applicable. There is no AI model or training set mentioned.

    8. How the ground truth for the training set was established: Not applicable.


    In summary: The provided document is an FDA 510(k) clearance letter for a conventional physical medical device (dental implant system). The evaluation and clearance process for such devices involve demonstrating safety and effectiveness by showing substantial equivalence to existing legally marketed devices, typically through non-clinical (laboratory) testing, materials characterization, and compliance with recognized standards. The concepts and terminology in your request are largely tailored to the evaluation of AI/Machine Learning-driven medical devices, which is not what this document addresses.

    Ask a Question

    Ask a specific question about this device

    K Number
    K243255
    Manufacturer
    Date Cleared
    2025-07-03

    (261 days)

    Product Code
    Regulation Number
    872.3640
    Panel
    Dental
    Reference & Predicate Devices
    Why did this record match?
    510k Summary Text (Full-text Search) :

    .** | K243255 | K200817 |
    | Classification Name | Endosseous Dental Implant Abutments (872.3630)
    | Endosseous Dental Implant Abutments (872.3630) |
    | Product Code | NHA | NHA |
    | Material |
    ) | Endosseous Dental Implant Abutments (872.3630) |
    | Product Code | NHA | NHA |
    | Material
    ) | Endosseous Dental Implant Abutments (872.3630) |
    | Product Code | NHA | NHA |
    | Material
    ) | Endosseous Dental Implant Abutments (872.3630) |
    | Product Code | NHA | NHA |
    | Material

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    URIS Long Implant & Abutments are indicated for use in partially or fully edentulous mandibles and maxillae, in support of single or multiple-unit restorations including; cemented retained, screw retained, or overdenture restorations, and final or temporary abutment support for fixed bridgework. It is intended for delayed loading.

    Device Description

    URIS Long Implants are dental implants made of Unalloyed Titanium, grade 4 (ASTM F67) intended for use in partially or fully edentulous mandibles and maxillae, in support of single or multiple-unit restorations. The surface is SLA (Sandblasted, Large grit and Acid etched) treated and is provided sterile.

    URIS OMNI Long Implants consist of two implant lines, the OMNI Straight and the OMNI Tapered. The OMNI Straight implant features straight walls, with smaller threads at the coronal end and larger threads at the apical end. The OMNI Tapered implant has a tapered wall with a single-thread design.

    Both implant lines have two platform sizes, Narrow (Ø 3.5 mm) and Regular (Ø 4.0 – Ø 4.5 mm).

    Both implant lines share the following diameters and lengths:

    TypePlatformDiameter (Ø)Length (mm)
    StraightNarrowØ 3.516, 18
    StraightRegularØ 4.0 – 4.516, 18
    TaperedNarrowØ 3.516, 18
    TaperedRegularØ 4.0 – 4.516, 18

    URIS OMNI Long Implants are compatible with the following abutments:

    The abutments are provided non-sterile. All non-sterile products must be sterilized by the end user prior to use.

    The AOT Angled Abutment, Multi-Unit Base, and Multi-Unit Temporary Abutment are packaged with their corresponding screw(s).

    For convenience, the Multi-Unit Base and Multi-Unit Temporary Abutment are each supplied with two screws included in the package.

    The abutments are designed for use with the two implant types submitted in this application. They are also compatible with the implants included in the K172100 URIS OMNI Implant system (Narrow: Ø3.5 mm, lengths 8.5–14.5 mm / Regular: Ø4.0–Ø6.5 mm, lengths 7.0–14.5 mm).

    The AOT Straight and AOT Angled Abutments are compatible with the Base and Temporary Abutments included in this submission, as well as those previously cleared under K231874.

    AI/ML Overview

    The provided FDA 510(k) clearance letter for URIS Long Implant & Abutments does not contain information about acceptance criteria and study proving device performance as typically expected for AI/ML-driven medical devices. This submission is for a traditional dental implant system, and the clearance is based on substantial equivalence to predicate devices through non-clinical testing, primarily focusing on mechanical, material, and biocompatibility properties.

    Therefore, many of the requested elements regarding acceptance criteria for device performance (e.g., sensitivity, specificity, AUC), study design (sample size, data provenance, ground truth establishment, expert adjudication), and AI/ML-specific study types (MRMC, standalone performance) are not applicable to this submission.

    However, I can extract the information relevant to the type of device and submission, specifically the non-clinical acceptance criteria and the tests performed to meet them.


    Acceptance Criteria and Supporting Study for URIS Long Implant & Abutments

    As this FDA 510(k) pertains to a traditional dental implant and abutment system (URIS Long Implant & Abutments, K243255), and not an AI/ML device, the acceptance criteria and study details are focused on non-clinical performance, primarily demonstrating mechanical integrity, material compatibility, and safety through established engineering and biological standards, rather than diagnostic accuracy metrics.

    The clearance is largely based on demonstrating substantial equivalence to previously cleared predicate devices through a series of non-clinical tests.

    1. Table of Acceptance Criteria and Reported Device Performance

    Given the nature of this device (dental implants), the "performance" is demonstrated through engineering and biocompatibility testing rather than diagnostic accuracy. The acceptance criteria are implicitly meeting the requirements of the cited ISO and USP standards. The document doesn't provide specific quantitative "pass/fail" values for each test, but rather states that the device "met the criteria of the standards."

    Acceptance Criteria CategorySpecific Test/EvaluationReported Device Performance
    BiocompatibilityBacterial Endotoxin Testing (LAL) in accordance with USP and USPMet criteria of the standards
    BiocompatibilityBiocompatibility testing according to ISO 10993-1Met criteria of the standards (Completed)
    SterilizationSterilization Testing according to ISO 11137-1,-2,-3 and ISO 11737-1,-2Met criteria of the standards
    Sterilization (End-user)End user sterilization Testing according to ISO 17665-1,-2Met criteria of the standards
    Shelf-Life & Packaging IntegrityShelf-Life Testing according to ISO 11607-1,-2 / ASTM F1980-07, ASTM F88, ASTM F1140, ASTM F1929, ASTM F2096 and sterility testingMet criteria of the standards
    Mechanical IntegrityFatigue Testing according to ISO 14801:2016 and FDA Guidance (worst-case scenario)Met criteria of the standards (Addressed dimensional differences from predicates via this testing)
    Material CharacterizationSEM (Scanning electron microscopy) images and EDS (Energy Dispersive X-ray Spectroscopy) analysisMet criteria of the standards (Implicitly, as part of material verification)
    Substantial EquivalenceComparison of Indications for Use, Material, Design, Dimension, Connection, Functions, and Surface Treatments to Predicate DevicesDemonstrated substantial equivalence

    2. Sample Size Used for the Test Set and Data Provenance

    • Sample Size: Not explicitly stated in terms of a "test set" as one would expect for an AI/ML device. The "sample size" would refer to the number of physical dental implants/abutments subjected to each non-clinical test (e.g., number of units for fatigue testing, number of samples for biocompatibility). These numbers are not detailed in the summary but would be standard for regulatory testing required by the ISO/ASTM standards cited (e.g., minimum of 5-10 samples for fatigue per condition).
    • Data Provenance: Not applicable in the context of patient data for diagnostic accuracy. The "data" originated from laboratory testing of the manufactured dental implants and abutments.

    3. Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications

    • Not Applicable: This clearance is based on non-clinical engineering and biological safety tests (e.g., fatigue strength, sterility, biocompatibility), not on the interpretation of medical images or patient data requiring expert consensus or ground truth establishment by clinical experts like radiologists.

    4. Adjudication Method for the Test Set

    • Not Applicable: As there is no human interpretation of data for diagnostic purposes, there's no need for an adjudication process. Test results are objective measurements (e.g., force at failure, sterility present/absent).

    5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study

    • Not Performed / Not Applicable: MRMC studies are specific to evaluating diagnostic devices, particularly those involving human readers and AI assistance. This device is a physical dental implant, not a diagnostic AI tool.

    6. Standalone (Algorithm Only) Performance Study

    • Not Performed / Not Applicable: This is a physical medical device, not a software algorithm.

    7. Type of Ground Truth Used

    • Engineering/Material Standards and Biological Safety Standards: The "ground truth" for this device's performance is established by the specified ISO and ASTM standards (e.g., ISO 14801 for fatigue testing, ISO 10993-1 for biocompatibility). These standards define acceptable performance limits for mechanical properties and biological responses.

    8. Sample Size for the Training Set

    • Not Applicable: This device is not an AI/ML algorithm that requires a training set. Its design and manufacturing are based on established engineering principles and materials science.

    9. How the Ground Truth for the Training Set Was Established

    • Not Applicable: As there is no training set for an AI/ML algorithm, this question is not relevant.
    Ask a Question

    Ask a specific question about this device

    K Number
    K250967
    Device Name
    Sherlock
    Manufacturer
    Date Cleared
    2025-06-26

    (87 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Reference & Predicate Devices
    Why did this record match?
    510k Summary Text (Full-text Search) :

    , Michigan 48105

    Re: K250967
    Trade/Device Name: Sherlock
    Regulation Number: 21 CFR 872.3630
    , Michigan 48105

    Re: K250967
    Trade/Device Name: Sherlock
    Regulation Number: 21 CFR 872.3630
    Endosseous
    Regulation Name: Endosseous dental implant abutment
    Regulation Number: 21 CFR 872.3630
    interface | n/a |
    | Product Code | NHA | NHA | NHA | DZE, NHA | DZE, NHA | DZE |
    | Regulation | 872.3630
    | 872.3630 | 872.3630 | 872.3640 | 872.3640 | 872.3640 |

    [The table continues with detailed technical

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Sherlock abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for single-unit or multi-unit prosthetic restorations.

    All digitally designed CAD/CAM customizations for Sherlock abutments are to be sent to an Open Implants-validated milling center for manufacture.

    Sherlock abutments are compatible with the implant systems listed in the Compatibility Table:

    Compatibility Table

    Compatible Implant SystemsImplant Body Diameter (mm)Implant Platform Diameter (mm)
    Neodent Helix GM®, Drive GM®, Titamax GM®3.5, 3.75, 4.0, 4.3, 5.0, 6.0, 7.03.0
    Device Description

    Sherlock is a dental implant abutment system that is being expanded to include a new compatible implant system, Neodent GM®. The Subject device implant platform diameter is 3.0 mm, and the corresponding compatible implant body diameters range from 3.5 mm to 7.0 mm.

    The abutment designs are Titanium Base, Titanium Blank, Straight Multi-Unit, Multi-Unit Angled 17°, and Multi-Unit Angled 30° Abutments. These abutment designs were previously cleared in the sponsor's K220482 Predicate device and K212664 Reference device submissions. All abutment designs are provided with corresponding abutment screws.

    The Subject device Titanium Base abutments are intended to be used as a two-piece abutment composed of the base bottom-portion (prefabricated titanium base component) with a cemented/bonded CAD-CAM fabricated zirconia top-portion (superstructure) where the final two-piece abutment (base component and cemented superstructure) is the finished device used for the prosthetic restoration. Each patient-specific zirconia superstructure is individually prescribed by the clinician and manufactured by an authorized milling center.

    All Subject device prefabricated titanium base components are provided in a straight design with no angulation in the titanium base post. They are provided with either an indexed/engaging implant connection for crowns or a non-engaging/nonindexed implant connections for bridges. The standard prefabricated titanium base components are provided in gingival heights ranging from 0.8 mm to 3.0 mm and abutment post lengths of 8 mm or 10 mm. The ASC prefabricated titanium base components are provided in gingival heights ranging 0.8 mm to 2.5 mm and abutment post length of 8 mm. Additional gingival height may be provided for both abutment designs in the zirconia superstructure. ASC prefabricated titanium base components are provided with a cutout in the prosthetic post to accommodate a restoration with an angled screw channel when clinically necessary. Standard prefabricated titanium base components and ASC prefabricated titanium base components posts may be reduced to 4 mm to accommodate individual patient occlusion. The zirconia mesostructure may contain an angled post within the established design parameters.

    The overall design parameters for the two-part Standard and ASC CAD/CAM prefabricated titanium base components with zirconia mesostructure are:

    • Minimum Zirconia Wall Thickness – 0.5 mm
    • Minimum Post Height for single-unit abutment* – 4.0 mm
    • Minimum Overall Gingival Height – 0.8 mm (titanium base plus zirconia)
    • Maximum Overall Gingival Height – 5 mm
    • Maximum Correction Angle – 30°

    The required cement for bonding the zirconia superstructure to the Subject device Titanium Bases to create the final two-piece abutment is Kuraray Noritake Dental PANAVIA™ V5 cleared in K150704.

    Titanium Blank abutments, sometimes referred to as "Pre-mill" or "Ti-Blank" abutments are one-part abutments intended for use in a CAD/CAM workflow. Each Subject device Titanium Blank implant abutment has a pre-manufactured indexed implant connection interface with a cylindrical customization section and a milling retention geometry section. The retention geometry holds the component in a milling machine fixture while the patient-specific portion above the implant interface is milled in a dental milling machine. All patient-specific Titanium Blank abutment fabrication is by prescription on the order of the clinician.

    The overall design parameters for the Titanium Blank customized abutments are:

    • Minimum Wall Thickness – 0.75 mm
    • Minimum Post Height for single-unit abutment* – 4.0 mm
    • Minimum Overall Gingival Height – 0.8 mm
    • Maximum Overall Gingival Height – 5 mm
    • Maximum Correction Angle – 30°

    All digitally designed zirconia mesostructures for use with the Subject device titanium base abutments and digitally designed Subject device titanium blank abutments will be fabricated at an Open Implants validated milling center under FDA quality system regulations.

    Multi-Unit Abutments (MUAs) are intended for use with multi-unit restorations. They are considered two-part abutments. The base portion of the MUA is connected directly to the implant either with an integral screw (straight MUA) or with a separate multi-unit abutment screw (angulated abutments). Straight MUAs have a non-indexed connection with the dental implant. The angulated MUAs have an indexed connection with the dental implant. The second part of the MUA is a mating coping which is retained with a prosthetic screw. Multi-Unit Abutments are available in Straight, 17° Angulated and 30° Angulated configurations. The coping and prosthetic screw is compatible with each MUA design/configuration.

    All Subject device abutments and corresponding abutment screws are pre-manufactured from Ti-6Al-4V ELI (Grade 23) titanium conforming to ASTM F136, Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401) and are provided non-sterile to the user. The mesostructure/copings for Titanium base abutments are fabricated from zirconia conforming to ISO 13356, Implants for surgery — Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP).

    AI/ML Overview

    The provided FDA 510(k) Clearance Letter for Sherlock Dental Implant Abutment does not contain the information requested regarding acceptance criteria and a study proving the device meets those criteria.

    This document describes the device's indications for use, its substantial equivalence to predicate devices, and the non-clinical data reviewed by the FDA for clearance. However, it does not detail specific acceptance criteria or an associated study demonstrating compliance with those criteria.

    The "Performance Data" section lists several types of non-clinical data submitted, such as static and fatigue testing according to ISO 14801, a reverse engineering study, biocompatibility testing, cleaning and sterilization validation, and an MRI review. These are the studies performed to support the substantial equivalence claim, but the FDA letter does not specify quantitative acceptance criteria for these tests nor does it report specific performance outcomes that directly address such criteria.

    Therefore, I cannot populate the requested table or provide details for points 1-9 based solely on the provided text. The document focuses on demonstrating substantial equivalence to previously cleared devices rather than presenting a performance study against predefined acceptance criteria.

    Ask a Question

    Ask a specific question about this device

    K Number
    K243009
    Device Name
    MIST IC
    Date Cleared
    2025-06-24

    (271 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Why did this record match?
    510k Summary Text (Full-text Search) :

    California 92008

    Re: K243009
    Trade/Device Name: Mist IC
    Regulation Number: 21 CFR 872.3630
    California 92008

    Re: K243009
    Trade/Device Name: Mist IC
    Regulation Number: 21 CFR 872.3630
    Proprietary Name:** MIST IC
    Common Name: Dental implant abutment
    Regulation Number: 21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    MIST IC abutments are intended for use to support a prosthetic device in a partially or completely edentulous patient. They are intended to support a single-unit or multi-unit, cement retained prosthesis in the mandible or maxilla. MIST IC abutments are compatible for use with the following implants:

    Compatible Implant SystemImplant Body Diameter, mmImplant Platform Name
    Straumann Bone Level (CrossFit® Morse Taper)2.9SC
    3.3NC
    4.1, 4.8RC
    Straumann® Tissue Level (CrossFit® Connection)3.3, 4.1, 4.8RN
    4.8WN
    Straumann BLX (TorcFit™ Internal Hexalobular)3.5, 3.75, 4.0, 4.5RB
    5.0, 5.5, 6.5WB
    Neodent GM (Morse taper)3.5, 3.75, 4.0, 4.3, 5.0, 6.0, 7.0Grand Morse (GM)

    All digitally designed custom abutments for use with MIST IC abutments are to be sent to an Imagine Milling Technologies validated milling center for manufacture.

    Device Description

    MIST IC from Imagine Milling Technologies, LLC is a line of Ti-base and machinable blank abutments to interface with compatible dental implants from four (4) manufacturers, and a total of eight (8) implant-abutment interface compatibilities. The subject device prosthetic platform diameters range from 3.8 mm to 6.9 mm. All stock subject device components (abutments and abutment screws) are made of titanium alloy conforming to ASTM F136. The subject device MIST IC L-LINK abutments have a TiN coating achieved through a physical vapor deposition (PVD) process that is identical to the process used for TiN coating of Imagine Milling Technologies, LLC devices cleared in K222368. The PVD cathodic arc evaporation process is a high current, low voltage process in which material evaporated from the cathode (Ti) is ionized, transported through the vacuum chamber with reactive gas (N2) and deposited as a non-porous, thin film on the titanium substrate. Each abutment is supplied with the non-sterile abutment screw designed for attachment to the corresponding compatible OEM implant.

    All patient-specific abutment fabrication for all MIST IC abutments is by prescription on the order of the clinician. All MIST IC abutments are intended to be milled at an Imagine Milling Technologies, LLC validated milling center under FDA quality system regulations.

    MIST IC L-LINK abutments are two-piece abutments to be used as a base when fabricating a CAD-CAM customized restoration where the superstructure produced will compose the second part of the two-piece abutment; the assembly becoming a final finished medical device after cementation on the subject device abutment. They are provided with engaging and non-engaging connections.

    The L-LINK abutments and corresponding zirconia superstructure are provided to the clinician either with the superstructure cemented to the abutment by the dental laboratory, or separately for the clinician to bond together chairside using the cement required in the labeling (RelyX RMGIP bonding cement, cleared in K022476).

    The design parameters for L-LINK patient-specific abutments are:

    • Minimum wall thickness – 0.5 mm
    • Minimum cementable post height for single-unit restoration – 4.0 (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height – 0.5 mm
    • Maximum gingival height (for all except Straumann BLX L-Link) – 5.0 mm
    • Maximum gingival height (for Straumann BLX L-LINK) – 6.0 mm
    • Maximum angle – 20°

    All zirconia copings (superstructures) for use with the subject device MIST IC L-LINK abutments will conform to ISO 13356.

    MIST IC PREFIT abutments are cylindrical abutments designed for patient-specific abutment fabrication by a CAD-CAM process and machined into a one-piece, all titanium abutment. The portion of the abutment available for milling is either 9.9 mm in diameter by 20 mm in length or 13.9 mm in diameter by 20 mm in length. MIST IC PREFIT abutments have an engaging connection.

    The design parameters for PREFIT patient-specific abutments are:

    • Minimum wall thickness – 0.5 mm
    • Minimum cementable post height for single-unit restoration – 4.0 (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height – 0.5 mm
    • Maximum gingival height (for all except Straumann BLX PREFIT) – 5.0 mm
    • Maximum gingival height (for Straumann BLX PREFIT) – 6.0 mm
    • Maximum angle – 30°
    AI/ML Overview

    The provided document is a 510(k) clearance letter for a dental device, specifically dental implant abutments. It details the device's administrative information, predicate devices, indications for use, subject device description, and performance data used to demonstrate substantial equivalence.

    However, the document does not contain any information regarding acceptance criteria or a study proving the device meets those criteria in the context of an AI/ML algorithm. The performance data section refers to non-clinical analyses, such as MR compatibility, sterilization validation, biocompatibility, mechanical properties testing, reverse engineering, and static/dynamic compression-bending testing conforming to ISO 14801. These are standard tests for mechanical dental devices, not AI/ML performance evaluation.

    Therefore, I cannot provide the requested information for acceptance criteria and a study proving an AI device meets them based on the given text. The device described, "Mist IC," is a physical dental implant abutment, not an artificial intelligence/machine learning (AI/ML) powered medical device.

    To directly answer your prompt based on the provided text, the following information is missing or not applicable:

    1. A table of acceptance criteria and the reported device performance: Not applicable. The document describes mechanical and material performance testing for a physical device, not AI/ML performance metrics like sensitivity, specificity, or AUC against defined acceptance criteria for an AI algorithm.
    2. Sample sizes used for the test set and the data provenance: Not applicable. There is no AI/ML test set. The document refers to testing of physical components (OEM implants, abutments, screws, subject device constructs).
    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts: Not applicable. No AI/ML ground truth establishment.
    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable.
    5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable. This is not an AI-assisted diagnostic device.
    6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done: Not applicable.
    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.): Not applicable. The "ground truth" for this device's performance would be the physical properties and mechanical integrity verified by engineering standards (e.g., ISO 14801).
    8. The sample size for the training set: Not applicable. No AI/ML training set mentioned.
    9. How the ground truth for the training set was established: Not applicable. No AI/ML training set mentioned.

    The document focuses solely on the substantial equivalence of the "Mist IC" dental implant abutments to legally marketed predicate devices based on design, materials, manufacturing, and conventional mechanical/material performance testing.

    Ask a Question

    Ask a specific question about this device

    K Number
    K242978
    Device Name
    Geo Abutment
    Manufacturer
    Date Cleared
    2025-06-16

    (263 days)

    Product Code
    Regulation Number
    872.3630
    Panel
    Dental
    Why did this record match?
    510k Summary Text (Full-text Search) :

    California 92008

    Re: K242978
    Trade/Device Name: Geo Abutment
    Regulation Number: 21 CFR 872.3630
    Trade/Device Name:** Geo Abutment
    Common Name: Dental abutment
    Regulation Number: 21 CFR 872.3630

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Geo Abutments are intended for use to support a prosthetic device in a partially or completely edentulous patient. They are intended to support a single-unit or multi-unit cement-retained prosthesis in the mandible or maxilla. Geo Abutments are compatible with the following implants. All digitally designed custom abutments for use with Geo Abutments are to be sent to a GeoMedi Co. Ltd. validated milling center for manufacture.

    Device Description

    The purpose of this submission is to obtain marketing clearance for Geo Abutment from GeoMedi Co., Ltd. a line of titanium base abutments (identified as Multibase) and machinable blank abutments (identified as CMFit) to interface with compatible dental implants from four (4) manufacturers, and a total of seven (7) implant-abutment connections. The compatible implant body diameters range from 3.0 mm to 8.0 mm. The subject device prosthetic platform diameters range from 4.0 mm to 4.6 mm. All patient-specific abutments prepared from subject device Geo Abutment are to be manufactured at a GeoMedi validated milling center.

    Geo Multibase abutments are two-piece abutments in which the Geo Multibase Abutment comprises the first part of the two-piece abutment and a patient-specific zirconia superstructure comprises the second part; the assembly becoming a final finished medical device after cementation of the superstructure on the subject device abutment. They are provided in straight designs, and two (2) connection types: for single unit prostheses (engaging connection) and for bridge or multi-unit prostheses (non-engaging connection). They are not intended for angulation correction, as the design parameters for the superstructure are restricted to straight abutments only.

    These abutments are made of titanium alloy (Ti-6Al-4V) with a titanium nitride (TiN) coating on the coronal portion of the external surface, not including the implant-abutment interface.

    The Geo Multibase abutment and corresponding zirconia superstructure are provided to the clinician either with the superstructure cemented to the abutment by the dental laboratory or separately, for the clinician to bond together chairside, using the cement required in the labeling (3M ESPE RelyX Unicem bonding cement, cleared in K022476 as RelyX RMGIP).

    All patient-specific custom zirconia superstructure fabrication is by prescription on the order of the clinician.

    The design parameters for zirconia superstructures to be used with Geo Multibase abutments are:

    • Minimum wall thickness – 0.5 mm
    • Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height of the superstructure – 0 mm (Geo Multibase abutments have minimum gingival height of 1.0 mm)
    • Maximum gingival height – 5.0 mm
    • Maximum angle – 0° (straight only)

    All zirconia copings (superstructures) for use with the subject device Geo Multibase abutment will be made at a GeoMedi Co., Ltd. validated milling center under FDA quality system regulations, and the material will conform to ISO 13356, Implants for surgery – Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP).

    Geo CMFit abutments are cylindrical titanium alloy abutments designed to be used for fabrication of a one-piece, all titanium patient-specific abutment by a CAD/CAM process. The portion of the abutment available for milling is either 9.9 mm in diameter by 20 mm in length or 13.9 mm in diameter by 20 mm in length. Geo CMFit abutments are available in engaging and non-engaging connections.

    All patient-specific abutment fabrication is by prescription on the order of the clinician. The design parameters for all CMFit patient-specific abutments are:

    • Minimum wall thickness – 0.65 mm
    • Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height – 0.5 mm
    • Maximum gingival height – 5.0 mm
    • Maximum angle – 30°

    Manufacture of the Geo Abutment CMFIT patient-specific abutment is to be performed at an GeoMedi Co., Ltd. validated milling center.

    AI/ML Overview

    The provided text is a 510(k) clearance letter for a dental implant abutment, not an AI/ML medical device where performance characteristics like sensitivity, specificity, or reader studies are typically discussed.

    The document primarily focuses on demonstrating substantial equivalence to predicate devices through:

    • Indications for Use (IFU) comparison: Showing that the intended use of the Geo Abutment is the same as already cleared devices (supporting prosthetic devices in edentulous patients, compatible with various implants).
    • Technological characteristics comparison: Detailing similarities in design, materials (titanium alloy, TiN coating, zirconia for superstructures), manufacturing processes (CAD/CAM, milling center), mechanical properties, and sterilization methods.
    • Non-clinical performance data: This section lists types of tests conducted (e.g., mechanical testing per ISO 14801, shear/tension testing per ASTM F1044/F1147, sterilization validation per ISO 17665-1/2, biocompatibility per ISO 10993-5/12) to ensure the device meets safety and performance standards equivalent to the predicate. However, it does not provide acceptance criteria or specific numerical results from these tests. It only states that these tests were done to "demonstrate that the subject devices... have sufficient strength for the intended use" and "characterize the mechanical properties."

    Therefore, based on the provided document, I cannot fulfill your request for:

    1. A table of acceptance criteria and the reported device performance: This detailed information is typically part of the test reports submitted to the FDA, but not usually summarized in the publicly available 510(k) clearance letter or summary in this level of detail (i.e., the specific pass/fail thresholds and the measured values for each test). The document only states what was tested and the conclusion that it demonstrated "sufficient strength."
    2. Sample sizes used for the test set and the data provenance: This information is not present in the 510(k) summary. These details would be in the specific test protocols and reports.
    3. Number of experts used to establish the ground truth... and their qualifications: This is not applicable as this is a physical device, not an AI/ML diagnostic aid requiring human expert annotation for ground truth.
    4. Adjudication method for the test set: Not applicable for this type of device.
    5. MRMC comparative effectiveness study: Not applicable for a physical dental abutment. This is typically for AI/ML diagnostic devices.
    6. Standalone (algorithm only without human-in-the-loop performance): Not applicable for a physical device.
    7. The type of ground truth used: For a physical device like a dental abutment, "ground truth" relates to material properties, mechanical strength, dimensional accuracy, and biocompatibility, as demonstrated through engineering tests and material characterization, not clinical outcomes or expert consensus in an AI sense. The document refers to ISO and ASTM standards, which define the test methods and what constitutes acceptable performance (the "ground truth" for material and mechanical properties).
    8. The sample size for the training set: Not applicable. This is not an AI/ML device.
    9. How the ground truth for the training set was established: Not applicable.

    In summary, the provided document demonstrates substantial equivalence for a physical dental device through comparison to predicate devices and adherence to established engineering and material standards, rather than through clinical study formats typically seen for AI/ML diagnostic tools.

    To answer your question, if this were an AI/ML device document, the "acceptance criteria" and "reported device performance" would typically be found in sections describing performance metrics like:

    • Sensitivity, Specificity, Accuracy
    • Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)
    • Positive Predictive Value (PPV), Negative Predictive Value (NPV)
    • F-score or Dice coefficient (for segmentation tasks)
    • Comparison to a "clinical standard of care" or "expert performance."

    And the "study that proves the device meets the acceptance criteria" would be a clinical validation study (often a retrospective or prospective reader study or a standalone algorithm performance study) with clearly defined ground truth, reader qualifications, and statistical analysis. None of these elements are present because the device is a physical dental abutment.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 76