Search Results
Found 18 results
510(k) Data Aggregation
(99 days)
IPD Dental Implant Abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for single or multiple dental prosthetic restorations.
IPD Dental Implant Abutments is a dental implant abutment system composed of dental abutments, screws, as well as other dental abutment accessories, intended to be placed into dental implants to provide support for dental prosthetic restorations.
Abutments provide basis for single or multiple tooth prosthetic restorations. They are available in a variety of connection types to enable compatibility with commercially available dental implants systems.
IPD Dental Implant Abutments includes the following categories of dental abutment designs:
- Titanium base (Interface) abutments (INC3D);
- Multi-Unit abutments (MUA);
- Overdenture Abutments (PSD);
- Temporary Abutments (PP);
- Healing Abutments (TC).
The system also includes the use of the corresponding screws intended to attach the prosthesis to the dental implant. Specifically:
- Ti Screw (TT): Used during restoration fabrication.
- TiN Screw (TTN): Used in finished restorations, with TiN coating.
- TPA Screw (TPA): Used in finished angulated restorations, with TiN coating.
The metallic components of the subject abutments and screws are made of titanium alloy conforming to ISO 5832-3 "Implant for surgery – Metallic materials – Part 3: Wrought titanium 6-aluminium 4-vanadium alloy".
The purpose of this submission is to expand IPD Dental Implant Abutments offerings with:
• New IPD's compatible dental implant systems,
• New angulations available abutment-category specific.
• New in-house TiN coating.
IPD dental implant abutments and screws are compatible with the following commercially available dental implant systems:
(Table 2. Summary of IPD abutments categories with compatibilized OEM Implant/Abutment Systems with specific reference to maximum angulation specifically included in this submission. provided in original text)
Ti Base (Interface) abutments are attached (screw-retained) to the implant/abutment and cemented to the zirconia superstructure.
The Ti Base is a two-piece abutment composed of the titanium component, as the bottom-half, and the zirconia superstructure, as the top-half. It consists of a pre-manufactured prosthetic component in Titanium alloy per ISO 5832-3, as well as the supporting digital library file for FDA-cleared design software (3Shape Abutment Designer™ Software, cleared under K151455) which enables the design of a patient-specific superstructure by the laboratory/clinician and which will be manufactured in FDA-cleared Zirconia (e.g., DD Bio Z, K142987) according to digital dentistry workflow at the point of care, or at a dental laboratory.
The design and fabrication of the zirconia superstructure for Ti Base (Interface) will be conducted using a digital dentistry workflow requiring the use of the following equipment, software and materials:
Scanner: 3D Scanner D850.
Design Software: 3Shape Abutment Designer Software, K151455.
Zirconia Material: DD Bio Z, K142987.
Milling machine/Brand: Dental Concept System Model: DC1 Milling System.
Cement: Multilink® Automix, K123397.
Ti Base (Interface) abutment design parameters for the zirconia superstructure are defined as follows:
Minimum gingival height: 1.5 mm
Minimum wall thickness: 0.43 mm
Minimum post height for single-unit restorations: 4.75 mm (1)
Maximum gingival height: 6.0 mm
Maximum angulation of the final abutment 30° (2)
The resulting final prosthetic restoration is screwed to the dental implant. All subject abutments are single-use and provided non-sterile. Final restoration (which includes the corresponding screw) is intended to be sterilized at the dental clinic before it is placed in the patient.
The provided FDA 510(k) clearance letter pertains to IPD Dental Implant Abutments, a medical device, not an AI/ML-driven software product. Therefore, the information requested regarding acceptance criteria and study data for an AI/ML device (e.g., sample size for test/training sets, expert ground truthing, MRMC studies, standalone performance) is not applicable to this document.
The document describes the device, its intended use, comparison to predicate devices, and the non-clinical performance testing conducted to demonstrate substantial equivalence. These tests are physical and chemical in nature, not related to the performance of an AI/ML algorithm.
Here's a breakdown of why an AI/ML-focused response is not possible, based on the provided text:
- Device Type: The device is "IPD Dental Implant Abutments," which are physical components used in dentistry (titanium alloy abutments, screws, designed for zirconia superstructures). It is not software, a diagnostic imaging tool, or an AI/ML algorithm.
- Purpose of Submission: The submission aims to expand compatibility with new dental implant systems and include new angulations and in-house TiN coating. This is a modification of a physical medical device, not a new AI/ML development.
- Performance Data (Section VII): This section explicitly lists non-clinical performance testing such as:
- Sterilization validation (ISO 17665-1)
- Biocompatibility testing (Cytotoxicity, Sensitization, Irritation per ISO 10993)
- Reverse engineering and dimensional analysis for compatibility
- Validation of the digital workflow and software system (but this refers to the CAD/CAM software used to design the physical abutments, not an AI/ML diagnostic tool)
- Static and dynamic fatigue testing (ISO 14801)
- Modified Surfaces Information
- MRI safety review
Conclusion:
The provided document describes a 510(k) clearance for a physical dental implant component. It does not contain any information about the acceptance criteria or study design for an AI/ML driven medical device. Therefore, a table of acceptance criteria and reported device performance related to AI/ML, sample sizes for test/training sets, details on expert ground truthing, MRMC studies, or standalone performance of an algorithm cannot be extracted from this text.
Ask a specific question about this device
(455 days)
The ISO Abutment is appropriate for use with overdentures or partial dentures retained in whole or in part by endosseous implants in the mandible or maxilla. The ISO Abutment is compatible with the following fixtures.
The ISO Abutment is to be placed into the dental implant to provide support for a prosthetic restoration. The ISO Abutment is made from Titanium grade Ti-6AI-4V ELI (meets ASTM Standard F-136) and compatible with several fixtures made by 3rd party implant manufactures.
This 510(k) clearance letter details the regulatory approval for the ISO Abutment, an endosseous dental implant abutment. It establishes its substantial equivalence to a predicate device based on similar indications for use, technological characteristics, materials, design, and sterilization methods.
However, the provided document does not contain information related to software, artificial intelligence (AI), diagnostic accuracy studies, or clinical performance data typically associated with acceptance criteria tables, sample sizes for medical imaging datasets, expert adjudication, or MRMC studies. The device itself is a physical dental implant component, not an AI-powered diagnostic tool.
Therefore, I cannot extract the requested information regarding:
- A table of acceptance criteria and reported device performance (as these would be mechanical and biocompatibility tests, not diagnostic accuracy metrics)
- Sample sizes used for the test set and data provenance (not applicable for this type of device)
- Number of experts used to establish ground truth and qualifications (not applicable)
- Adjudication method (not applicable)
- MRMC comparative effectiveness study (not applicable)
- Standalone (algorithm-only) performance (not applicable)
- Type of ground truth used (e.g., pathology, outcomes data - not applicable for this device beyond engineering/material testing)
- Sample size for the training set (not applicable)
- How the ground truth for the training set was established (not applicable)
The "Non-clinical Tests" section (Page 13) describes the types of studies performed for a physical device, which include:
- Sterilization validation testing (ISO 17665-1 & 2)
- Biocompatibility tests (ISO 10993-5, -10, -11, -3, -33) including:
- Cytotoxicity
- Oral mucosa irritation
- Skin sensitization
- Acute systemic toxicity
- Subchronic systemic toxicity
- Bacterial reverse mutation
- Reverse engineering analysis of OEM implant body, abutment, and fixation screw (for compatibility verification)
- TiN coating tests (F1044, F1147, F1160)
- Non-clinical worst-case MRI review (using scientific evidence and published literature) to assess magnetic induction displacement force (ASTM F2052), magnetic induction torque (ASTM F2213), RF induction heating (ASTM F2182), and image artifact (ASTM F2119).
These tests establish the physical, mechanical, and biological safety and compatibility of the dental abutment, rather than the diagnostic performance of an AI system.
Ask a specific question about this device
(263 days)
Geo Abutments are intended for use to support a prosthetic device in a partially or completely edentulous patient. They are intended to support a single-unit or multi-unit cement-retained prosthesis in the mandible or maxilla. Geo Abutments are compatible with the following implants. All digitally designed custom abutments for use with Geo Abutments are to be sent to a GeoMedi Co. Ltd. validated milling center for manufacture.
The purpose of this submission is to obtain marketing clearance for Geo Abutment from GeoMedi Co., Ltd. a line of titanium base abutments (identified as Multibase) and machinable blank abutments (identified as CMFit) to interface with compatible dental implants from four (4) manufacturers, and a total of seven (7) implant-abutment connections. The compatible implant body diameters range from 3.0 mm to 8.0 mm. The subject device prosthetic platform diameters range from 4.0 mm to 4.6 mm. All patient-specific abutments prepared from subject device Geo Abutment are to be manufactured at a GeoMedi validated milling center.
Geo Multibase abutments are two-piece abutments in which the Geo Multibase Abutment comprises the first part of the two-piece abutment and a patient-specific zirconia superstructure comprises the second part; the assembly becoming a final finished medical device after cementation of the superstructure on the subject device abutment. They are provided in straight designs, and two (2) connection types: for single unit prostheses (engaging connection) and for bridge or multi-unit prostheses (non-engaging connection). They are not intended for angulation correction, as the design parameters for the superstructure are restricted to straight abutments only.
These abutments are made of titanium alloy (Ti-6Al-4V) with a titanium nitride (TiN) coating on the coronal portion of the external surface, not including the implant-abutment interface.
The Geo Multibase abutment and corresponding zirconia superstructure are provided to the clinician either with the superstructure cemented to the abutment by the dental laboratory or separately, for the clinician to bond together chairside, using the cement required in the labeling (3M ESPE RelyX Unicem bonding cement, cleared in K022476 as RelyX RMGIP).
All patient-specific custom zirconia superstructure fabrication is by prescription on the order of the clinician.
The design parameters for zirconia superstructures to be used with Geo Multibase abutments are:
- Minimum wall thickness – 0.5 mm
- Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
- Minimum gingival height of the superstructure – 0 mm (Geo Multibase abutments have minimum gingival height of 1.0 mm)
- Maximum gingival height – 5.0 mm
- Maximum angle – 0° (straight only)
All zirconia copings (superstructures) for use with the subject device Geo Multibase abutment will be made at a GeoMedi Co., Ltd. validated milling center under FDA quality system regulations, and the material will conform to ISO 13356, Implants for surgery – Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP).
Geo CMFit abutments are cylindrical titanium alloy abutments designed to be used for fabrication of a one-piece, all titanium patient-specific abutment by a CAD/CAM process. The portion of the abutment available for milling is either 9.9 mm in diameter by 20 mm in length or 13.9 mm in diameter by 20 mm in length. Geo CMFit abutments are available in engaging and non-engaging connections.
All patient-specific abutment fabrication is by prescription on the order of the clinician. The design parameters for all CMFit patient-specific abutments are:
- Minimum wall thickness – 0.65 mm
- Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
- Minimum gingival height – 0.5 mm
- Maximum gingival height – 5.0 mm
- Maximum angle – 30°
Manufacture of the Geo Abutment CMFIT patient-specific abutment is to be performed at an GeoMedi Co., Ltd. validated milling center.
The provided text is a 510(k) clearance letter for a dental implant abutment, not an AI/ML medical device where performance characteristics like sensitivity, specificity, or reader studies are typically discussed.
The document primarily focuses on demonstrating substantial equivalence to predicate devices through:
- Indications for Use (IFU) comparison: Showing that the intended use of the Geo Abutment is the same as already cleared devices (supporting prosthetic devices in edentulous patients, compatible with various implants).
- Technological characteristics comparison: Detailing similarities in design, materials (titanium alloy, TiN coating, zirconia for superstructures), manufacturing processes (CAD/CAM, milling center), mechanical properties, and sterilization methods.
- Non-clinical performance data: This section lists types of tests conducted (e.g., mechanical testing per ISO 14801, shear/tension testing per ASTM F1044/F1147, sterilization validation per ISO 17665-1/2, biocompatibility per ISO 10993-5/12) to ensure the device meets safety and performance standards equivalent to the predicate. However, it does not provide acceptance criteria or specific numerical results from these tests. It only states that these tests were done to "demonstrate that the subject devices... have sufficient strength for the intended use" and "characterize the mechanical properties."
Therefore, based on the provided document, I cannot fulfill your request for:
- A table of acceptance criteria and the reported device performance: This detailed information is typically part of the test reports submitted to the FDA, but not usually summarized in the publicly available 510(k) clearance letter or summary in this level of detail (i.e., the specific pass/fail thresholds and the measured values for each test). The document only states what was tested and the conclusion that it demonstrated "sufficient strength."
- Sample sizes used for the test set and the data provenance: This information is not present in the 510(k) summary. These details would be in the specific test protocols and reports.
- Number of experts used to establish the ground truth... and their qualifications: This is not applicable as this is a physical device, not an AI/ML diagnostic aid requiring human expert annotation for ground truth.
- Adjudication method for the test set: Not applicable for this type of device.
- MRMC comparative effectiveness study: Not applicable for a physical dental abutment. This is typically for AI/ML diagnostic devices.
- Standalone (algorithm only without human-in-the-loop performance): Not applicable for a physical device.
- The type of ground truth used: For a physical device like a dental abutment, "ground truth" relates to material properties, mechanical strength, dimensional accuracy, and biocompatibility, as demonstrated through engineering tests and material characterization, not clinical outcomes or expert consensus in an AI sense. The document refers to ISO and ASTM standards, which define the test methods and what constitutes acceptable performance (the "ground truth" for material and mechanical properties).
- The sample size for the training set: Not applicable. This is not an AI/ML device.
- How the ground truth for the training set was established: Not applicable.
In summary, the provided document demonstrates substantial equivalence for a physical dental device through comparison to predicate devices and adherence to established engineering and material standards, rather than through clinical study formats typically seen for AI/ML diagnostic tools.
To answer your question, if this were an AI/ML device document, the "acceptance criteria" and "reported device performance" would typically be found in sections describing performance metrics like:
- Sensitivity, Specificity, Accuracy
- Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)
- Positive Predictive Value (PPV), Negative Predictive Value (NPV)
- F-score or Dice coefficient (for segmentation tasks)
- Comparison to a "clinical standard of care" or "expert performance."
And the "study that proves the device meets the acceptance criteria" would be a clinical validation study (often a retrospective or prospective reader study or a standalone algorithm performance study) with clearly defined ground truth, reader qualifications, and statistical analysis. None of these elements are present because the device is a physical dental abutment.
Ask a specific question about this device
(239 days)
PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, and Titanium base ASC Flex are intended for use with dental implants as a support for single or multiple tooth protheses in the maxilla or mandible of a partially or fully edentulous patient. Abutment-level prosthetic components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are intended for use as a support for multi-unit screw-retained bridges and bars in the maxilla or mandible of a partially or fully edentulous patient.
All digitally designed abutments for use with PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, Titanium base ASC Flex, Multi-unit Titanium Base, Multi-unit Titanium Cap, and MedentiBASE Titanium Base are intended to be sent to an FDA-registered Medentika validated milling center for manufacture or to be manufactured according to the digital dentistry workflow, which integrates multiple components: Scans from desktop and intra oral scanners, CAD and CAM software and milling machine with associated accessories.
Medentika abutments for the Nobel Biocare Nobel Active® 3.0 mm, Dentsply Sirona Astra Tech OsseoSpeed EV® 3.0 mm and TX® 3.0 mm, Straumann Bone Level 2.9 implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.
The subject devices are Medentika CAD/CAM Abutments, which primarily expand the options for fabricating patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow". This workflow uses scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machines, and associated tooling and accessories. The devices include Titanium Base abutments, Titanium base ASC Flex abutments, and PreFace and TI-Form (blanks) abutments.
The abutments are made of titanium alloy (Ti-6Al-4V ELI). Titanium base abutments also include a zirconia superstructure. The specified zirconia materials for milling superstructures are Ivoclar Vivadent IPS e.max ZirCAD Prime, Ivoclar Vivadent IPS e.max ZirCAD Prime Esthetic, Amann Girrbach Zolid Bion, Amann Girrbach Zolid Gen-X, and Institut Straumann AG n!ce Zirkonia HT. The specified cement for bonding superstructures is Multilink Hybrid Abutment Cement from Ivoclar Vivadent AG.
Key design parameters for CAD/CAM zirconia superstructures (on Titanium base and Titanium base ASC Flex) include: minimum wall thickness of 0.5 mm, minimum cementable post height of 4.0 mm for single unit restorations, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of the final abutment of 30°.
PreFace and TI-Forms abutments (blanks) are used by dental laboratories to fabricate customized abutments from titanium alloy. Their design parameters include: minimum wall thickness of 0.4 mm, minimum cementable post height of 4.0 mm, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of 30°.
Prosthetic-level components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are provided for use with previously cleared Medentika multi-unit abutments and MedentiBASE abutments.
All abutments are provided non-sterile with appropriate abutment screws. The screws attach the abutment to the implant or the prosthesis to the abutment.
The provided 510(k) clearance letter and summary describe a medical device, Medentika CAD/CAM Abutments, and its substantial equivalence to predicate devices based on non-clinical performance data. The document does not contain information about acceptance criteria or performance data for an AI/ML-based device, nor does it detail a clinical study involving human readers or expert consensus for ground truth.
Therefore, for the information requested in your prompt, I can only extract what is presented in the document, which pertains to the non-AI aspects of device acceptance and testing. Many of the points specifically refer to AI/MRMC studies, which are not applicable to this document.
Here's an analysis based on the provided text:
Device Description and Purpose:
The device is "Medentika CAD/CAM Abutments," which are dental implant abutments. The primary purpose of this submission is to expand the fabrication options for patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow" that integrates CAD/CAM software and milling machines. It also adds new sizes and OEM compatibilities.
Study Type:
This is a pre-market notification (510(k)) submission seeking substantial equivalence to existing legally marketed devices. It relies heavily on non-clinical performance data to demonstrate that the new manufacturing workflow and expanded compatibilities do not raise new questions of safety or effectiveness.
Analysis of Requested Information (based on the provided document):
1. A table of acceptance criteria and the reported device performance:
The document outlines various performance tests conducted to demonstrate substantial equivalence, but it does not explicitly present a "table of acceptance criteria" with corresponding "reported device performance." Instead, it states that the tests demonstrate sufficient strength or ensure accuracy and reliability.
Here's a summary of the performance tests and their implied purpose:
Performance Test Category | Purpose / Implied Acceptance Criteria | Reported Device Performance (Summary) |
---|---|---|
Biocompatibility Testing | To ensure the device materials (titanium alloy, zirconia, cement) are safe for use in the human body. | "Biocompatibility testing of final finished devices... according to ISO 10993-1, ISO 10993-5, and ISO 10993-12" was provided. Implied: The device passed these tests. |
Mechanical Testing (ISO 14801) | To demonstrate that the abutments, including zirconia and cement, in combination with compatible implants, have sufficient strength for intended use. | "Mechanical testing conducted according to ISO 14801... to demonstrate that the subject Medentika CAD/CAM Abutments... have sufficient strength for the intended use" was provided. Implied: The device demonstrated sufficient strength. |
Reverse Engineering Dimensional Analysis | For new OEM compatibilities, to show that the subject device abutments are compatible with the respective OEM implants. | "Reverse engineering dimensional analysis for the OEM compatibilities... to demonstrate that the subject device abutments are compatible with the respective OEM implants" was provided. Implied: Compatibility was demonstrated. |
CAD Software Validation | To demonstrate that maximum and minimum design parameters for the subject devices are locked into the design software and available libraries. | "Validation of CAD software to demonstrate that the maximum and minimum design parameters... are locked into the design software and available libraries" was provided. Implied: Software validation confirmed design parameter locking. |
CAM Software & Milling Machine Validation | To ensure the accuracy and reliability of the milling process (verified NC file imports, milling tools, materials, milling strategies, post-processing). | "Validation of CAM software and milling machines to ensure the accuracy and reliability of the milling process" was provided. Implied: Accuracy and reliability were confirmed. |
CAM Restriction Zones Validation | To show avoidance of damage or modification of the connection geometry and locking of restriction zones from user editing in the CAM software. | "Validation testing of CAM restriction zones to show avoidance of damage or modification of the connection geometry and locking of restriction zones..." was provided. Implied: Restriction zones prevent damage. |
MR Environment Analysis | To evaluate device compatibility in a Magnetic Resonance (MR) environment. | "Non-clinical analysis and testing to evaluate the metallic subject devices and compatible dental implants in the MR environment" was referenced from K180564. Implied: Device is compatible or safe in MR environment. |
Sterilization Validation | To ensure non-sterile devices can be sterilized by the end-user to a specific sterility assurance level. | "Moist heat sterilization for subject devices provided non-sterile to the end user, validated to a sterility assurance level of 10-6 by the overkill method according to ISO 17665-1 and ISO TR 17665-2" was referenced. Implied: Sterilization method is effective. |
2. Sample size used for the test set and the data provenance:
- Sample Size for Test Set: The document does not specify numerical sample sizes for any of the non-clinical tests (e.g., how many abutments were mechanically tested, how many software validation tests were run). It simply states that "testing was conducted" or "validation was performed."
- Data Provenance: The document does not explicitly state the country of origin of the data or whether the studies were retrospective or prospective. Given the nature of pre-market non-clinical testing for medical devices, these are typically prospective laboratory tests conducted by the manufacturer or accredited testing facilities. The manufacturer is Medentika® GmbH (Huegelsheim, Germany), suggesting the testing likely occurred in Germany or at internationally recognized labs.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
This information is not applicable to the provided document. The ground truth for this device is established through engineering specifications, material standards (e.g., ASTM F136), and validated manufacturing processes, not through human expert consensus on diagnostic images.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:
This information is not applicable to the provided document, as it describes non-clinical engineering and manufacturing validation, not a multi-reader clinical study for AI.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
This information is not applicable to the provided document. This device is a physical dental abutment and its associated CAD/CAM workflow, not an AI-based diagnostic tool that would require human reader studies. The document explicitly states: "No clinical data were included in this submission."
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
This information is not applicable to the provided document. While the device utilizes CAD/CAM software and milling machines, it is a physical product manufactured through a workflow, not a standalone AI algorithm whose performance needs to be assessed in isolation. The software functions as a design and manufacturing aid, not a diagnostic or decision-making algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
The "ground truth" in this context refers to established engineering and material standards:
- Standards Compliance: Adherence to ISO standards (e.g., ISO 14801 for mechanical strength, ISO 10993 for biocompatibility, ISO 17665 for sterilization).
- Dimensional Accuracy: Verification against established design parameters and compatibility specifications for dental implants (e.g., OEM implant body and abutment dimensions).
- Material Specifications: Conformance to ASTM F136 for titanium alloy and specifications for zirconia and cement.
- Software Design Parameters: The "ground truth" for the CAD software validation is the pre-defined maximum and minimum design parameters that the software must enforce.
8. The sample size for the training set:
This information is not applicable to the provided document. The "device" in question is a physical dental abutment and its manufacturing workflow, not an AI/ML model that requires a training set. The CAD/CAM software itself is validated, not "trained" on a dataset in the AI sense.
9. How the ground truth for the training set was established:
This information is not applicable to the provided document for the same reasons as point 8.
Ask a specific question about this device
(195 days)
ALLONUS Tech Prosthetic is intended for use with dental implants as a support for single or multiple-unit prosthetic restorations in the maxilla or mandible of partially or fully edentulous patient. It is including; cemented retained, screw-retained, or overdenture restorations.
It is compatible with the following systems:
- · Astra OsseoSpeed EV(K130999) 3.0
- · Astra OsseoSpeed EV(K120414) 3.6, 4.2, 4.8, 5.4 mm
- Tapered Internal Implants (K071638) (K143022) 3.4. 3.8. 4.6. 5.8 mm
- · BioHorizons Laser-Lok Implant System (K093321) 3.0 mm
- · Conelog Screw-Line (K113779) 3.3, 3.8, 4.3, 5.0 mm
- Osstem TSIII SA (K121995) 3.5 (3.7) , 4.0 (4.2) , 4.5 (4.6) , 5.0 (5.1), 6.0 (6.0), 7.0 (6.8) mm (Mini. Regular)
- · Megagen AnyRidge Internal Implant System (K140091) 4.0, 4.4, 4.9, 5.4 (3.1)
- · Neodent Implant System GM Helix (K163194, K180536) 3.5, 3.75, 4.0, 4.3, 5.0 (3.0) 6.0 (3.0)
- · Nobel Active 3.0 (K102436) 3.0
- · Nobel Active Internal Connection Implant (K071370) NP RP
- · Nobelactive Wide Platform (Wp) (K133731) WP
- Straumann BLX Implant (K173961, K181703, K191256) 3.5, 3.75, 4.5, 5.5, 6.5 (RB, WB)
- · Straumann 02.9 mm Bone Level Tapered Implants, SC CARES Abutments (K162890) 2.9 (SC)
- · Straumann® Bone Level Tapered Implants (K140878) 3.3, 4.1, 4.8 (NC, RC)
- · Zimmer 3.1mmD Dental Implant System (K142082) 3.1 (2.9)
- (Ti-base only) Screw Vent® and Tapered Screw Vent® (K013227) 3.7(3.5), 4.7(4.5), 6.0(5.7)
All digitally designed abutments and/or coping for use with the abutments are intended to be sent to a ALLONUS Tech-validated milling center for manufacture.
ALLONUS Tech Prosthetic is made of titanium alloy (Ti-6AI-4V ELI, ASTM F136) intended for use as an aid in prosthetic restoration. It consists of Pre-Milled Blank abutment, Ti-Base Abutment, and Multi-unit Abutment and Components (Multi-unit Healing Cap, Multi-unit Temporary cylinder, Multi-unit Ti-cylinder).
Pre-Milled Blank has a pre-manufactured implant interface connection interface with a customizable cylindrical area-by CAD/CAM- above the implant-abutment interface.
Ti Base consists of a two-piece abutment, where the titanium base is a pre-manufactured component of the abutment that will be used to support a CAD/CAM-designed zirconia superstructure (the second part of the two-piece abutment) that composes the final abutment.
Multi-unit Abutment which are placed into the dental implant to provide support for the prosthetic restoration. The abutments are made of Titanium grade Ti-6A1-4V ELI (meets ASTM Standard F-136). Multi-unit Abutment includes abutments and components (Multi-unit Healing Cap, Multi-unit Temporary cylinder, Multi-unit Ti-cylinder). Multi-unit Abutment - are provided in various gingival cuff height ranging from 1 to 6 mm.
All digitally designed abutments and/or coping for use with the abutments are intended to be sent to a ALLONUS Tech-validated milling center for manufacture.
The provided text is a 510(k) Summary for the ALLONUS Tech Prosthetic, which is an endosseous dental implant abutment. It details the device's technical characteristics and compares it to predicate devices to establish substantial equivalence, rather than describing a study that proves the device meets specific acceptance criteria for a new and novel performance claim.
Therefore, many of the requested categories for acceptance criteria and study details are not directly applicable or available in this type of submission. The information provided primarily focuses on demonstrating equivalence through comparison to existing legally marketed devices, material properties, and standard performance tests for similar devices.
However, I can extract the relevant information that is available from the document for each type of device within the ALLONUS Tech Prosthetic family: Pre-Milled Blank, Ti Base, Multi-Unit Abutment, Multi-Unit Healing Cap, Multi-Unit Temporary Cylinder, and Multi-Unit Ti-Cylinder.
General Information on Acceptance Criteria and Studies for ALLONUS Tech Prosthetic (as inferred from the 510(k) Summary):
The ALLONUS Tech Prosthetic is claiming substantial equivalence to predicate devices, meaning it does not need to establish new performance criteria but rather demonstrate that it is as safe and effective as existing legally marketed devices. The "acceptance criteria" here are largely implied by the performance of the predicate devices and the relevant ISO standards for dental implant abutments. The studies performed are non-clinical bench tests.
1. Table of Acceptance Criteria (Inferred from Comparison) and Reported Device Performance:
The document presents comparisons to predicate devices to establish substantial equivalence rather than explicit acceptance criteria and corresponding performance metrics for novel claims. However, the design limits of the subject devices are compared to the design limits of the predicate devices, which act as de facto acceptance criteria in the context of substantial equivalence. The device's performance is demonstrated by meeting the standards in non-clinical testing.
Here's a generalized table summarizing this approach:
Feature/Test | Acceptance Criteria (Based on Predicate/Standards) | Reported Device Performance (Subject Device) |
---|---|---|
Materials | Ti-6Al-4V ELI (ASTM F136) for metallic components, Zirconia Oxide for Ti-Base superstructure | Ti-6Al-4V ELI (ASTM F136) for Pre-Milled Blank, Multi-Unit Abutment, Healing Cap, Temporary Cylinder, Ti-Cylinder. Ti-6Al-4V ELI (ASTM F136) and Zirconia Oxide (InCoris Zi) for Ti Base. |
Fatigue Test (ISO 14801:2016) | Met criteria of the standard. | Met criteria of the standard. (Page 23) |
End-User Steam Sterilization (ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010) | Met criteria of the standard. | Met criteria of the standard. (Page 23) |
Biocompatibility (ISO 10993-1:2009, -5:2009, -10:2010) | Met criteria of the standard. | Met criteria of the standard. (Page 23) |
Implant-to-Abutment Compatibility | Demonstrated by reverse engineering and assessment of OEM components. | Demonstrated compatibility with various OEM implant systems (listed in Indications for Use). Reverse engineering included assessment of maximum and minimum dimensions of critical design aspects and tolerances of OEM implant body, OEM abutment, OEM abutment screw, along with cross-sectional images of the subject device and compatible implant body. (Page 24) |
MR Safety (FDA Guidance "Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment") | Demonstrated substantial equivalence to predicate devices using scientific rationale and published literature for magnetically induced displacement force and torque. | Non-clinical worst-case MRI review performed; rationale addressed parameters per FDA guidance. Results demonstrated substantial equivalence to predicate devices. (Page 24) |
Design Limits (examples) | Pre-Milled Blank: Post Angle: 0-30°, Diameter: 3.0-7.0 mm (Predicate) Ti Base: Post Angle: 0-30°, Diameter: 3.0-7.0 mm (Predicate) Multi-Unit Abutment: Diameter: 4.8 mm, Gingival Height: 1.5-4.5 mm, Angle: 0, 17, 30° (Reference Device) | Pre-Milled Blank: Design limits are "slightly different" but within diameter and angle range of predicate. (Page 11) Specific limits are provided in a table on page 7 for various compatible systems (e.g., Min Gingival Height: 0.5 mm, Max Gingival Height: 5.0-6.0 mm, Min Wall Thickness: 0.3-0.6 mm, Min Post Height: 4.0-4.3 mm). Ti Base: Post Angle: 0-15°, Gingival Height: 0.5-5.0 mm, Post Height: 4.0-6.0 mm, Diameter: 5.0-8.0 mm, Thickness: 0.4 mm. These are "slightly different" but within diameter and angle range of predicate. (Page 17) Multi-Unit Abutment: Diameter: 4.8 mm, Gingival Height: 1, 2, 3, 4, 5, 6 mm, Angle: 0, 17, 29°. Diameter is "slightly big," gingival height "slightly different," angles "within the predicate device's range." (Page 18) |
Sterility | Non-sterile (Predicate) | Non-sterile (All subject devices) |
Indications for Use / Intended Use | Similar to predicate devices | ALLONUS Tech Prosthetic is intended for use with dental implants as a support for single or multiple-unit prosthetic restorations in the maxilla or mandible of partially or fully edentulous patients, including cemented-retained, screw-retained, or overdenture restorations. Compatible with various specific implant systems. (Pages 3, 9, 10, 16, 17, 18, 19, 20, 21, 22) |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective):
- Test Set Sample Size:
- The document does not specify the exact sample sizes used for the non-clinical bench tests (fatigue, sterilization, biocompatibility, or dimensional analysis). It only states that tests were performed "for the subject device" and "of the worst-case scenario through fatigue testing."
- Data Provenance:
- The 510(k) submission is from ALLONUS Tech Co., LTD. in the REPUBLIC OF KOREA. This implies the testing was likely conducted in or overseen by this entity.
- The studies were non-clinical bench tests, not clinical studies involving human patients. Therefore, terms like "retrospective" or "prospective" clinical dataProvenance are not applicable here.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
- This information is not provided in the 510(k) Summary. For non-clinical bench testing, "ground truth" is typically established by recognized international standards (e.g., ISO, ASTM) and engineering principles, rather than expert consensus on clinical cases.
- The document mentions "Dimensional analysis and reverse engineering... were performed" and "assessment of maximum and minimum dimensions... along with cross-sectional images." This suggests engineering expertise, but specific numbers or qualifications of experts are not stated.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:
- This is not applicable as the studies were non-clinical bench tests. Adjudication methods like 2+1 (two readers plus one adjudicator) are used in clinical studies, particularly for diagnostic imaging, to resolve discrepancies in expert interpretations of patient data.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- No, an MRMC comparative effectiveness study was not done. This type of study (MRMC) is relevant for diagnostic AI devices that assist human interpretation of medical images or data. The ALLONUS Tech Prosthetic is a physical medical device (dental implant abutment), not an AI diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:
- No, a standalone (algorithm-only) performance study was not done. This question is also typically relevant for AI/software as a medical device (SaMD). The ALLONUS Tech Prosthetic is a physical device that integrates with human dental procedures.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc):
- For the non-clinical tests (fatigue, sterilization, biocompatibility), the "ground truth" is adherence to recognized international standards (ISO, ASTM) and established engineering specifications.
- For implant-to-abutment compatibility, the "ground truth" was based on dimensional analysis and reverse engineering of OEM implant bodies, abutments, and screws, comparing the subject device's design to established OEM specifications.
8. The sample size for the training set:
- This is not applicable. "Training set" refers to data used to train machine learning algorithms. The ALLONUS Tech Prosthetic is a physical medical device, not an AI/ML algorithm.
9. How the ground truth for the training set was established:
- This is not applicable as there is no training set for a physical medical device.
Ask a specific question about this device
(138 days)
TruAbutment DS is a patient-specific CAD/CAM abutment, which is directly connected to endosseous dental implants and is intended to be used as an aid in prosthetic rehabilitation. It is compatible with the following systems: Astra OsseoSpeed EV (K130999, K120414), Biomet 3i Full OSSEOTITE Tapered Certain (K130949), DIO UF (II) Internal Submerged (K161987, K170608, K173975), Neoss ProActive® (K083561), Osstem TS (K161604), Camlog Screw-Line (K083496), Conelog Screw-Line (K113779), Implant Direct Legacy2 (K192221), BioHorizons Internal Implant System (K093321, K143022, K071638), MegaGen AnyRidge Internal Implant (K140091). All digitally designed abutments and/or copings for use with the TruAbutments are intended to be sent to a TruAbutment-validated milling center for manufacture.
TruBase is a titanium component that is directly connected to endosseous dental implants to provide support for patient-specific prosthetic restorations, such as copings or crowns. It is indicated for a screw-retained single tooth or cement-retained single tooth and bridge restorations. It is compatible with the following systems: Astra OsseoSpeed EV (K130999), Biomet 3i Full OSSEOTITE Tapered Certain (K130949), DIO UF(II) Internal Submerged (K161987, K170608, K173975), Neoss ProActive® (K083561), Camlog Screw-Line (K083496), Conelog Screw-Line (K113779), Implant Direct Legacy2 (K192221). All digitally designed abutments and/or copings for use with the TruAbutment are intended to be sent to a TruAbutment-validated milling center for manufacture.
TruAbutment DS, TruBase and abutment screw are made of Titanium grade Ti-6A1-4V ELI (meets ASTM Standard F136). TruAbutment DS, TruBase are supplied with two identical screws which are used: (1) For fixing the abutment into the endosseous implant. (2) For dental laboratory use during construction of related restoration. TruAbutment DS, TruBase are provided non-sterile. Therefore, it must be sterilized before use. TruAbutment DS, TruBase are devices that can only be sold, distributed, or used upon the order of an authorized healthcare provider, generally referred to as prescription (Rx) devices.
TruAbutment DS system includes patient-specific abutments that are placed into the dental implant to provide support for the prosthetic restoration. The subject abutments are indicated for serew-retained restorations. The design and manufacturing of the patient-specific abutments take into consideration the shape of the final prosthesis based on the patient's intra-oral indications using CAD/CAM system during the manufacturing. All manufacturing processes of TruAbutment DS are conducted at the TruAbutment milling center.
TruBase is a two-piece abutment. The base component is premanufactured and is used to support a cemented CAD/CAM zirconia superstructure. The base and the zirconia superstructure together form the final abutment. CAD/CAM customized superstructure that composes the final abutment is intended to be sent to a TruAbutment-validated milling center to be designed and milled, according to the prosthetic planning and patient clinical situation. The superstructure is cemented to the TruBase in the lab. Use "RelyX Unicem 2Automix" as an adhesive extra orally to connect.
The provided text is a 510(k) summary for the TruAbutment DS and TruBase devices. It primarily focuses on demonstrating substantial equivalence to a predicate device (TruAbutment DS, K203649) and does not detail an acceptance criteria table with reported device performance in the manner of a clinical study. The text describes non-clinical testing performed, but not a study designed to prove the device meets acceptance criteria related to a specific clinical outcome or diagnostic accuracy.
Therefore, many of the requested items (acceptance criteria table, sample size for test/training sets, data provenance, expert ground truth, adjudication, MRMC studies, standalone performance, type of ground truth) are not applicable based on the content of this 510(k) summary, which is a premarket notification for a medical device primarily based on demonstrating substantial equivalence through engineering and mechanical testing, not clinical performance or AI algorithm validation studies.
However, I can extract the information provided regarding non-clinical testing for the devices.
Acceptance Criteria and Study for TruAbutment DS & TruBase
Based on the provided 510(k) summary, the "acceptance criteria" and "study" described are focused on non-clinical mechanical performance testing and demonstration of substantial equivalence to a predicate device, rather than a clinical study proving performance against specific clinical or diagnostic accuracy metrics with human or AI components.
Here's the relevant information extracted and presented based on the document:
1. A table of acceptance criteria and the reported device performance
The document does not provide a table with specific quantitative acceptance criteria alongside actual reported numerical performance results for the new devices in the context of a comparative study proving their performance against such criteria. Instead, it states that "The results of the above tests have met the criteria of the standard and demonstrated substantial equivalence with the reference devices." This implies a qualitative "met standard" outcome rather than specific numerical performance data.
The tables provided describe the design limits of the devices and compare them to the predicate device, not performance data from a test:
TruAbutment DS Design Parameters (Acceptance Criteria are implied by meeting these limits)
Design Parameter | Subject Device (TruAbutment DS) Design Limit | Primary Predicate Device (K203649) Design Limit | Reported Device Performance (Implied) |
---|---|---|---|
Minimum and Maximum abutment angle (°) | 0 ~ 25 | 0 ~ 25 | Met specified range |
Minimum and Maximum cuff height (mm) | 0.5 ~ 6.0 | 0.5 ~ 6.0 | Met specified range |
Minimum and Maximum diameter at abutment/implant interface (Ø, mm) | 3.3 ~ 8.0 | 3.3 ~ 8.0 | Met specified range |
Minimum and Maximum length of the abutment (mm) | 6 ~ 11 | 6 ~ 11 | Met specified range |
Minimum wall thickness at abutment/implant interface (mm) | 0.4 | 0.4 ~ 0.9 | Met specified range |
Minimum and Maximum length of abutment post (length above the abutment collar / gingival height) (mm) | 4.0 ~ 7.0 | 4.0 ~ 7.0 | Met specified range |
TruBase Design Parameters (Acceptance Criteria are implied by meeting these limits)
Design Parameter | Subject Device (TruBase) Design Limit | Primary Predicate Device (K203649) Design Limit | Reported Device Performance (Implied) |
---|---|---|---|
Minimum and Maximum angulation (°) | 0 ~ 15 | 0 ~ 15 | Met specified range |
Minimum and Maximum gingival (cuff) height (mm) | 0.5 ~ 5.0 | 0.5 ~ 5.0 | Met specified range |
Minimum and Maximum diameter at abutment/implant interface (Ø, mm) | 5.0 ~ 8.0 | 5.0 ~ 8.0 | Met specified range |
Minimum thickness (mm) | 0.4 | 0.4 | Met specified value |
Minimum and Maximum length of abutment post (length above the abutment collar / gingival height) (mm) | 4.0 ~ 6.0 | 4.0 ~ 6.0 | Met specified range |
For mechanical performance, the document states:
"Mechanical performance testing was performed according to ISO 14801. For compatible OEM implant line, worst-case constructs were subjected to static compression and compression fatigue testing. The fatigue limit data for all other implant lines demonstrated the construct strengths to be sufficient for their intended use."
This confirms that the acceptance criteria for mechanical performance were "sufficient for their intended use" as defined by ISO 14801 and worst-case testing, but quantitative results are not provided.
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
- Sample Size for Test Set: The document mentions "worst-case constructs" were tested for mechanical performance, and "the entire system including all variations (all compatible implant bodies, dental abutments, and fixation screws)" was evaluated for MRI environment conditions. However, specific numerical sample sizes for these tests are not provided.
- Data Provenance: The data comes from non-clinical laboratory testing following international standards (ISO 14801, ISO 17665-1/2, ISO 10993 series). The country of origin and retrospective/prospective nature are not applicable as it's not a clinical data study.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
- This is not applicable. The "ground truth" for this type of device (dental abutments) is established through adherence to engineering design specifications, material standards (ASTM F136), and performance under mechanical stress tests (ISO 14801), as well as compliance with sterilization and biocompatibility standards. It does not involve expert interpretation of images or clinical outcomes in the same way an AI diagnostic device would.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
- This is not applicable as there is no human interpretation or subjective assessment of data requiring adjudication. Testing is based on objective measurements against engineering standards.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- This is not applicable. The device is an endosseous dental implant abutment, not an AI diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- This is not applicable. The device is a physical dental component, not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
- The "ground truth" for validating these devices is adherence to engineering specifications, material properties, and performance standards (e.g., passing specific load-bearing and fatigue tests per ISO 14801, meeting biocompatibility requirements, maintaining dimensional accuracy). "Dimensional analysis and reverse engineering" were used to confirm compatibility.
8. The sample size for the training set
- This is not applicable. There is no "training set" as this is a physical medical device, not an AI/machine learning algorithm.
9. How the ground truth for the training set was established
- This is not applicable for the reason above.
Summary of the Study Proving Device Meets Criteria (Based on Provided Text):
The "study" conducted was primarily non-clinical laboratory testing to demonstrate the mechanical performance, sterilization efficacy, and biocompatibility of the TruAbutment DS and TruBase devices. The objective was to show substantial equivalence to an existing legally marketed device (TruAbutment DS, K203649) by proving that the new devices meet established design limits and performance standards relevant to dental implant abutments.
- Mechanical Testing: Performed on "worst-case constructs" according to ISO 14801 for static compression and compression fatigue. The outcome was that "construct strengths [were] sufficient for their intended use."
- Sterilization Testing: Performed per ISO 17665-1:2006, 17665-2:2009 and ANSI/AAMI ST79:2010.
- Biocompatibility Testing: Performed per ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010.
- MRI Environment Evaluation: A non-clinical worst-case MRI review was done using scientific rationale and published literature to assess magnetically induced displacement force and torque.
- Dimensional Analysis and Reverse Engineering: Conducted on the implant-to-abutment connection platform to assess critical design aspects and tolerances, confirming compatibility.
The overall conclusion was that the devices "met the criteria of the standard and demonstrated substantial equivalence with the reference devices," thus indicating they met their implied acceptance criteria for safety and performance as medical devices. Clinical testing was explicitly stated as "not necessary."
Ask a specific question about this device
(99 days)
IPD Dental Implant Abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for single or multiple dental prosthetic restorations.
IPD Dental Implant Abutments is a dental implant abutment system composed of dental abutments and screws intended to be placed into dental implants to provide support for dental prosthetic restorations. Abutments provide basis for single or multiple tooth prosthetic restorations. They are available in a variety of connection types to enable compatibility with commercially available dental implants systems. IPD Dental Implant Abutments includes the following categories of dental abutment designs: Healing abutments; Temporary abutments; Cementing titanium abutments; Titanium base (interface) abutments; The system also includes the corresponding Titanium Screws intended to attach the prosthesis to the dental implant.
This is a Premarket Notification (510(k)) summary for the IPD Dental Implant Abutments. This document does not describe a study proving the device meets acceptance criteria as would be found in a clinical trial for a novel AI device with specific performance metrics. Instead, it demonstrates substantial equivalence to predicate devices based on bench testing and engineering analysis.
Here's an breakdown of the information provided, tailored to your request, but emphasizing that this is not a typical AI/ML performance study:
1. Table of Acceptance Criteria and Reported Device Performance
Since this is a 510(k) for dental abutments, the "acceptance criteria" are not reported as specific performance metrics (like sensitivity/specificity for an AI model), but rather as compliance with recognized standards and demonstration of substantial equivalence to predicate devices. The "reported device performance" refers to successful completion of various non-clinical tests.
Acceptance Criteria (Demonstrated Equivalence/Compliance) | Reported Device Performance (Test Results) |
---|---|
Same intended use as predicate device | Intended use is identical |
Same operating principle as predicate device | Operating principle is identical |
Similar design and same device categories | Very similar design, same categories |
Same materials and surface coatings | Identical materials and surface coatings |
Same sterilization processes | Identical sterilization processes |
Sterilization validation (SAL of 1 x 10^-6) | Met ISO 17665-1 requirements |
Biocompatibility: Cytotoxicity | Non-cytotoxic (ISO 10993-5 met) |
Biocompatibility: Sensitization (TiN coated) | Met ISO 10993-10 requirements |
Biocompatibility: Irritation (TiN coated) | Met ISO 10993-23 requirements |
Mechanical compatibility (with OEM implants) | Confirmed by reverse engineering/dimensional analysis |
Validation of digital workflow and software system | Ensured design/manufacturing within parameters |
Static and dynamic fatigue testing | Met ISO 14801 requirements (worst-case configurations) |
MRI safety (magnetically induced displacement force/torque) | Reviewed using scientific rationale and published literature, parameters addressed per FDA Guidance |
2. Sample size used for the test set and the data provenance
- Sample Size for Test Set: Not applicable in the context of human data or AI model test sets. The "test set" here refers to the physical samples of the IPD Dental Implant Abutments (and their components, potentially in various configurations) that were subjected to the specified bench and biocompatibility tests. The exact number of physical abutments, screws, or zirconia superstructures tested for each specific criterion is not detailed in this summary but would be found in the full test reports.
- Data Provenance: Not applicable in the context of country of origin for patient data. The tests were performed on the manufactured device components. The materials are specified (e.g., Titanium alloy conforming to ISO 5832-3).
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
Not applicable. "Ground truth" in this context would generally refer to expert-derived labels for clinical data, which is not part of this 510(k) submission. The "truth" for the performance tests is established by adherence to recognized international standards (e.g., ISO, FDA Guidance) and objective measurements from engineering or biological tests.
4. Adjudication method for the test set
Not applicable. Adjudication methods (like 2+1 or 3+1) are used for resolving disagreements among human readers or expert labelers of clinical data, which is not relevant here. The evaluation criteria for the bench tests are objective and defined by established standards.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
No. This device is a dental implant abutment, not an AI software. Therefore, MRMC studies and AI assistance effect sizes are not relevant to this submission.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
No. This is a physical medical device (dental abutments), not a standalone algorithm.
7. The type of ground truth used
The "ground truth" for this device's performance is established by:
- Compliance with international standards (e.g., ISO 14801 for fatigue testing, ISO 10993 series for biocompatibility, ISO 17665-1 for sterilization).
- Engineering specifications and dimensional analysis to ensure compatibility with other specified dental implant systems.
- Validated digital dentistry workflow parameters (e.g., minimum gingival height, wall thickness, post height, angulation for zirconia superstructures), which are based on established dental prosthetic principles.
8. The sample size for the training set
Not applicable. This is not an AI/ML device that requires a training set.
9. How the ground truth for the training set was established
Not applicable. No training set is used for this physical device.
Ask a specific question about this device
(171 days)
Multi-Unit DAS System abutments are intended for use with dental implants as a support for single-unit or multi-unit prostheses in the maxillary or mandibular arch of a partially or fully edentulous patient.
Multi-Unit DAS System abutments are designed for retention of single-unit and multi-unit restorations. The multi-unit abutments are provided in a straight design (no angulation in the base portion) that threads directly to the OEM implant. For each of the compatible OEM implant lines, the multi-unit abutments are provided with gingival heights ranging from 1 mm to 5 mm, a prosthetic platform diameter of 4 mm, and a prosthetic post height of 1.4 mm. The multi-unit abutments are the base of a two-piece abutment. The second piece is a metal coping, called a Ti-Base in this submission, that attaches to the multi-unit abutment (not directly to an implant). For permanent restorations a zirconia superstructure is attached to the Ti-Base, and additional gingival height and angulation may be provided in the zirconia superstructure.
The subject device metal copings (Ti-Bases) include: a straight, prepable design with an additional gingival height of 1.5 mm and a prepable 9 mm prosthetic post; and Dynamic Ti-Bases in three (3) designs, each with an additional gingival height of 0.5 mm and a cut-out in the prosthetic post to accommodate a restoration with an angled screw channel when clinically necessary. The Dynamic Ti-Base prosthetic post heights are 4.5 mm (maximum height) / 3.0 mm (cut-out height), and 9.0 mm/3.5 mm. Multi-Unit DAS System Ti-Bases with a 9.0 mm post height may be shortened to no less than 4 mm for a single-unit restoration. The prepable Ti-Base has a platform diameter of 4 mm (platform to the multi-unit abutment) and a prosthetic platform diameter of 4 mm. The Dynamic Ti-Bases have a platform diameter of 4 mm (platform to the multi-unit abutment) and a prosthetic platform diameter of 4.15 mm.
The compatibility between the subject device abutments and the OEM implants listed in the Indication for Use Statement was established by reverse engineering analysis of the OEM implants, OEM abutments, and OEM abutment screws.
All subject device abutments and abutment screws are made of titanium alloy (Ti-6Al-4V) conforming to ASTM F136 and ISO 5832-3.
All zirconia copings (superstructures) for use with the subject device Dynamic Ti-Base will be made at a Talladium España, SL validated milling center under FDA quality system regulations, and the material will conform to ISO 13356.
The design parameters for the CAD-CAM zirconia superstructure for the Multi-Unit DAS System are:
Minimum wall thickness - 0.25 mm
Minimum post height for single-unit restorations - 4.0 mm
Maximum gingival height in the zirconia superstructure - 5.24 mm for compatible Biomet 31 OSSEOTITE® Certain®, MegaGen AnyRidge, NobelActive®, and Zimmer Tapered Screw-Vent® implants; 5.76 mm for compatible Astra Tech OsseoSpeed TX implants
Minimum gingival height - 0.5 mm (in the Ti-Base)
Maximum angulation - 30° for compatible Biomet 3i OSSEOTITE® Certain®, MegaGen AnyRidge, NobelActive®, and Zimmer Tapered Screw-Vent® implants; 25° for compatible Astra Tech OsseoSpeed TX implants
The recommended cement for bonding the zirconia superstructure to the Dynamic TiBases to create the final two-piece abutment is G-CEM LinkAce™, cleared as GAM-200 in K120243.
Here's a breakdown of the acceptance criteria and study information for the Multi-Unit DAS System:
1. Table of Acceptance Criteria and Reported Device Performance
Acceptance Criteria Category | Specific Criteria/Test | Reported Device Performance | Study that Proves Device Meet Criteria |
---|---|---|---|
Mechanical Performance | According to ISO 14801 (Fatigue Test) | Mitigated by mechanical testing. | Mechanical testing conducted according to ISO 14801. |
Biocompatibility | According to ISO 10993-5 (Cytotoxicity) | Conforming to standards. | Referenced from K221966 (provided in K212108), which included biocompatibility testing. |
Material Composition | Titanium alloy (Ti-6Al-4V) conforming to ASTM F136 and ISO 5832-3. | All abutments and abutment screws are made of Ti-6Al-4V conforming to ASTM F136 and ISO 5832-3. | N/A (Material specification and sourcing) |
Zirconia Superstructure Material | Conforming to ISO 13356. | Material will conform to ISO 13356. | N/A (Material specification and sourcing) |
Sterilization | Moist heat sterilization to a Sterility Assurance Level (SAL) of 10^-5 by the overkill method according to ANSI/AAMI/ISO 17665-1 and ANSI/AAMI/ISO TIR 17665-2 for non-sterile devices. | Moist heat sterilization for non-sterile devices validated to a SAL of 10^-5 by the overkill method according to ANSI/AAMI/ISO 17665-1 and ANSI/AAMI/ISO TIR 17665-2. | Validation study conducted for moist heat sterilization. |
MR Safety | Assessment of magnetically induced displacement force and torque. | No adverse effect on safety. | Non-clinical analysis performed using scientific rationale and published literature (TO Woods et al. 2021) to evaluate subject devices in the MR environment. |
Compatibility with OEM Implants | Established by reverse engineering analysis. | Compatibility established. | Reverse engineering analysis (of OEM implants, OEM abutments, and OEM abutment screws) for compatible OEM implants. |
Zirconia Superstructure Design Parameters | Minimum wall thickness - 0.25 mm | ||
Minimum post height for single-unit restorations - 4.0 mm | |||
Maximum gingival height (in the zirconia superstructure) - 5.24 mm (Biomet, MegaGen, NobelActive, Zimmer), 5.76 mm (Astra Tech) | |||
Minimum gingival height - 0.5 mm (in the Ti-Base) | |||
Maximum angulation - 30° (Biomet, MegaGen, NobelActive, Zimmer), 25° (Astra Tech) | All parameters met. | Technical specification and design validation. | |
Recommended Cement | G-CEM LinkAce™ (cleared as GAM-200 in K120243). | G-CEM LinkAce™ is the recommended cement. | Adherence to existing cleared product. |
2. Sample size used for the test set and the data provenance
- Mechanical Testing (ISO 14801) & Sterilization Validation: The document does not explicitly state the sample sizes used for these tests. For ISO 14801, typically a statistically significant number of samples are tested to demonstrate fatigue resistance, but the exact number isn't provided. For sterilization, typically multiple runs with biological indicators are performed.
- Data Provenance: The document does not specify the country of origin for the data for specific tests, but the manufacturer, Talladium España, SL, is located in Lleida, Spain. The data is non-clinical.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
- This information is not applicable (N/A) as the submission details non-clinical data (mechanical testing, material specifications, biocompatibility, sterilization, MR safety analysis) rather than studies involving human expert assessment of images or clinical outcomes.
4. Adjudication method for the test set
- N/A, as no expert adjudication for medical diagnoses/interpretations was conducted due to the non-clinical nature of the studies.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- No MRMC comparative effectiveness study was done. This is a medical device for dental implants, not an AI software intended for diagnostic assistance. The document explicitly states: "No clinical data were included in this submission."
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- No standalone algorithm performance study was done. This is a physical medical device, not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
- Mechanical Testing: Ground truth is defined by the ISO 14801 standard and the manufacturer's performance specifications.
- Biocompatibility: Ground truth is established by the cellular responses and lack of toxicity as defined by ISO 10993-5.
- Material Composition: Ground truth is defined by the ASTM F136 and ISO 5832-3 standards.
- Sterilization: Ground truth is defined by the Sterility Assurance Level (SAL) of 10^-5, validated against microbiological indicators as per ANSI/AAMI/ISO 17665.
- MR Safety: Ground truth is established by scientific rationale and published literature, determining the device's behavior in an MR environment.
- Compatibility with OEM Implants: Ground truth is established by the precise measurements and design characteristics obtained through reverse engineering analysis of the OEM implants and their components.
8. The sample size for the training set
- N/A. There is no AI component or machine learning model that requires a training set for this device.
9. How the ground truth for the training set was established
- N/A. There is no AI component or machine learning model that requires a training set for this device.
Ask a specific question about this device
(126 days)
AOT & T-L Abutment is intended for use in conjunction with the fixture in partially or fully edentulous mandibles and maxillae, in support of multiple-unit restorations.
It is compatible with the following systems:
- · Astra OsseoSpeed EV(K130999) 3.0
- · Astra OsseoSpeed EV(K120414) 3.6, 4.2, 4.8, 5.4 mm
- · Dentium Company Limited Implantium (K041368): 3.6, 4.0, 4.5, 5.0 (Regular)
- · Implant Direct Legacy2(K192221) 3.0
- · Megagen AnyRidge Internal Implant System (K140091) 3.5, 4.0, 4.4, 4.9, 5.4 (3.1)
- Neodent Implant System GM Helix (K163194, K180536) 3.5, 3.75, 4.0, 4.3, 5.0 (3.0) 6.0 (3.0)
- · Nobel Active 3.0 (K102436) 3.0
- · Nobel Active Internal Connection Implant (K071370) NP RP 3.5, 4.3, 5.0
- · Nobelactive Wide Platform (Wp) (K133731) WP 5.5
- · TS Fixture System (K121995) 3.5 (3.75), 4.0 (4.2), 4.5 (4.6) , 5.0 (5.1) mm (Mini, Regular)
- Straumann BLX Implant (K173961, K181703, K191256) 3.5, 3.75, 4.0, 4.5, 5.0, 5.5, 6.5 (RB, WB)
- · Straumann 02.9 mm Bone Level Tapered Implants, SC CARES Abutments (K162890) 2.9 (SC)
- · Straumann® Bone Level Tapered Implants (K140878) 3.3, 4.1, 4.8 (NC, RC)
- · Zimmer 3.1mmD Dental Implant System (K142082) 3.1 (2.9)
- · Screw Vent® and Tapered Screw Vent® (K013227) 3.7(3.5), 4.1(3.5), 4.7(4.5), 6.0(5.7)
AOT & T-L Abutment which are placed into the dental implant to provide support for the prosthetic restoration. The abutments are made of Titanium grade Ti-6A1-4V ELI (meets ASTM Standard F-136). AOT abutment is a straight multi-unit abutment that connect implant fixtures to a restoration, such as a dental bridge or a denture. AOT products includes abutments and components (AOT Base, AOT Temporary, AOT Base Screw, AOT Plus Screw). T-L abutment is for partial and full arch restorations on endosseous dental implants. AOT & T-L abutments are provided in various gingival cuff height ranging from 1 to 3 mm for AOT , 1 to 6 mm for T-L.
The provided document describes the TruAbutment Inc. AOT & T-L Abutment and its substantial equivalence to a predicate device. This document focuses on the non-clinical testing for dental implant abutments, primarily mechanical and sterilization performance, rather than clinical efficacy involving human readers or AI.
Therefore, many of the requested categories related to human-in-the-loop performance, statistical measures like effect size, and large-scale clinical study methodologies are not applicable to this 510(k) submission.
Here's a breakdown of the available information based on your request:
Acceptance Criteria and Reported Device Performance
The acceptance criteria are implicitly defined by compliance with specified ISO standards and FDA guidance documents. The reported device performance is that it met these criteria.
Acceptance Criteria (Standard / Guidance) | Reported Device Performance |
---|---|
Fatigue Test: ISO 14801:2016 | Met the criteria of the standard. |
End User Steam Sterilization: ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010 | Met the criteria of the standard. |
Biocompatibility: ISO 10993-1:2009, ISO 10993-5:2009, ISO 10993-10:2010 | Met the criteria of the standard. |
FDA Guidance: "Class II Special Controls Guidance Document: Rootform Endosseous Dental Implants and Endosseous Dental Implant Abutments" | Complied with the guidance for comparative fatigue testing. |
Substantial Equivalence (Mechanical Strength): For all compatible OEM implant lines | Fatigue limit data demonstrated the construct strengths to be substantially equivalent to the predicate device. |
Material: Ti-6Al-4V ELI (ASTM F136) | Confirmed to be made of this material. |
Sterile State: Non-sterile (end-user sterilization) | Confirmed by sterilization validation. |
Intended Use: Functionally equivalent to predicate | Verified to be substantially equivalent in intended use. |
Design/Dimensions: Similar to predicate (with minor differences considered acceptable) | Dimensional analysis and reverse engineering indicated compatibility and substantial equivalence despite minor differences. |
Study Details
-
Sample size used for the test set and the data provenance (e.g., country of origin of the data, retrospective or prospective):
- Sample Size: Not explicitly stated for specific tests. For mechanical fatigue testing (ISO 14801), it mentions "worst-case constructs" were subjected to testing, implying a representative selection rather than a large clinical sample. Industry standards typically specify minimum sample sizes for such tests (e.g., 5-10 samples per test group for fatigue).
- Data Provenance: Not specified, but likely from laboratory testing conducted by the manufacturer or a contracted third-party lab. It's a non-clinical, bench-top study.
- Retrospective or Prospective: Non-clinical laboratory testing is neither retrospective nor prospective in the clinical sense. It's a controlled experimental study.
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g., radiologist with 10 years of experience):
- Not applicable. This is a non-clinical, bench-top engineering and materials performance study, not a diagnostic or clinical efficacy study requiring expert human interpretation of data for ground truth. Compliance with engineering standards and material specifications forms the basis of "ground truth."
-
Adjudication method (e.g., 2+1, 3+1, none) for the test set:
- Not applicable. Adjudication methods are typically used in clinical trials or studies involving subjective human interpretation (e.g., image reading) to resolve discrepancies. This study involves objective measurements from laboratory tests.
-
If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- Not applicable. This is a non-clinical technical performance study for dental implant abutments, not a study evaluating human reader performance or AI assistance.
-
If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
- Not applicable. This device is a physical dental abutment, not a software algorithm. The "standalone" performance here refers to the device's inherent mechanical properties and material characteristics as tested against engineering standards.
-
The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
- Ground Truth: Engineering standards (ISO 14801, ISO 17665, ISO 10993), material specifications (ASTM F136), and dimensional compatibility with OEM implant systems. Performance is measured objectively against these established criteria.
-
The sample size for the training set:
- Not applicable. There is no "training set" in the context of this non-clinical performance evaluation. This is not a machine learning or AI device.
-
How the ground truth for the training set was established:
- Not applicable for the same reason as above.
Ask a specific question about this device
(87 days)
SIMDA Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
SIMDA Abutment is made of titanium alloy (Ti-6Al-4V ELI, ASTM F136) intended for use as an aid in prosthetic restoration. It consists of Pre-Milled Blank and Ti-Base abutment. It has a premanufactured connection interface that fits directly to an endosseous dental implant.
This FDA 510(k) summary describes a dental device, the SIMDA Abutment. However, it does not include information that directly addresses the specific questions you've asked about acceptance criteria and a study proving a device meets them, particularly for an AI/ML powered device.
Here's why and what information is provided:
The document is a premarket notification for a Class II medical device, specifically dental implant abutments. These are physical components used in dental restorations, not an AI/ML powered diagnostic or therapeutic device. Therefore, the concepts of "acceptance criteria for an AI model," "test set," "ground truth," "MRMC studies," "effect size of human readers with AI assistance," or "standalone algorithm performance" are not applicable to this submission.
The "studies" mentioned are non-clinical (mechanical, biological) tests demonstrating the physical safety and performance of the abutments and their compatibility with existing dental implant systems.
Here's a breakdown of the relevant information provided, framed as closely as possible to your request, but acknowledging the device type:
Device: SIMDA Abutments (K232271)
Device Type: Endosseous Dental Implant Abutment (physical medical device, not AI/ML powered)
1. A table of acceptance criteria and the reported device performance
The document sets design limits and then demonstrates conformity through non-clinical testing. The "acceptance criteria" here are rather design specifications and performance standards for dental abutments.
Acceptance Criteria (Design Parameters/Limitations) | Reported Device Performance (Demonstrated through testing) |
---|---|
Pre-Milled Blank (for Patient-specific abutment): | |
- Minimum and Maximum Gingival (Cuff) Height: 0.5~5mm | "The minor difference between the two products in the design parameters [...] was evaluated as part of the performance testing and was determined to not impact the performance of the device." - Implies device meets these parameters and performs acceptably. |
- Minimum and Maximum diameter at abutment/implant interface: Ø4.0~Ø8.0 | |
- Minimum and Maximum length of abutment: 4.5~13mm | |
- Minimum and Maximum length of abutment post (length above the abutment collar/gingival height): 4~8mm | |
- Minimum wall thickness at abutment/implant interface: 0.4mm (Predicate: 0.4mm, Proposed: 0.39~0.55mm) | "This change in technological characteristics [minimum thickness] was evaluated as part of the performance testing and was determined to not impact the performance of the device." - Indicates the slightly wider range for the proposed device (0.39-0.55mm) still met performance requirements. |
- Minimum and Maximum abutment angle: 0~25° | |
Ti-Base (for Zirconia top-half): | |
- Post Angle (°): 0~15 | Identical to predicate. Non-clinical testing results "demonstrated the substantial equivalence with the primary predicate." |
- Cuff Height (mm): 0.5~5.0 | |
- Post Length (mm): 4.0~6.0 | |
- Diameter (Ø, mm): 5.0~8.0 | |
- Thickness (mm): 0.4 | |
General Performance: | |
- Fatigue Resistance: Must meet ISO 14801 and FDA special controls guidance. | Fatigue testing followed ISO 14801 and the FDA special controls guidance document. Results "demonstrated the substantial equivalence with the primary predicate." |
- Sterilization Efficacy: Must meet ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010. | End User Steam Sterilization Test according to ISO 17665-1:2006, 17665-2:2009 and ANSI/AAMI ST79:2010. Results "demonstrated the substantial equivalence with the primary predicate." |
- Biocompatibility: Must meet ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010. | Biocompatibility tests according to ISO 10993-1:2009, ISO 10993-5:2009, and ISO 10993-10:2010. Results "demonstrated the substantial equivalence with the primary predicate." |
- MRI Safety: Must address magnetically induced displacement force and torque (per FDA guidance "Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment"). | "Non-clinical worst-case MRI review was performed... using scientific rationale and published literature... Rationale addressed parameters per the FDA guidance... including magnetically induced displacement force and torque." - Implies the device is deemed safe in the MR environment based on this review. |
- Compatibility with OEM Implant Systems: Precision implant/abutment interface. | Dimensional analysis and reverse engineering of critical features... Cross sectional images were provided to demonstrate substantially equivalent compatibility. The testing aided implant to abutment compatibility and has established substantial equivalency of the proposed device with the predicate device. |
2. Sample sized used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
- This information is not provided. For physical tests (fatigue, biocompatibility, sterilization), sample sizes would typically be determined by the relevant ISO standards.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
- Not applicable. "Ground truth" in the context of AI/ML is not relevant here. The "truth" is established by physical measurement, adherence to material standards, and documented mechanical performance.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
- Not applicable. Adjudication methods are typically for subjective assessments, whereas these are objective physical tests.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- Not applicable. This is a physical dental device, not an AI-assisted diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- Not applicable. This is a physical dental device.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
- For physical tests, the "ground truth" is defined by the ISO standards and FDA guidance documents to which the device is tested. This includes established methods for fatigue testing, biocompatibility evaluation, and sterilization efficacy. For compatibility, it's about precise dimensional matching and mechanical fit to existing OEM implant systems.
8. The sample size for the training set
- Not applicable. This is a physical dental device, not an AI/ML powered device that requires a "training set."
9. How the ground truth for the training set was established
- Not applicable. See point 8.
In summary, this document is for a traditional medical device (dental abutments), and thus the questions formulated for an AI/ML device do not directly apply. The acceptance criteria are based on established engineering and materials standards, and performance is demonstrated through non-clinical laboratory testing rather than clinical or observational studies on diagnostic performance.
Ask a specific question about this device
Page 1 of 2