Search Results
Found 7 results
510(k) Data Aggregation
(416 days)
NUVENTUS NV.C™ Dental Implants are indicated for the functional and esthetic oral rehabilitation of the upper or lower jaw of edentulous or partially edentulous patients. NUVENTUS NV.C™ dental implants may be used for immediate, early or delayed implantation following the extraction or loss of natural teeth. The implants can be placed with immediate loading for single-tooth or multiple teeth restorations when good primary stability is achieved and with appropriate occlusal loading to restore chewing function. NUVENTUS NV.CTM Dental Implants are compatible for use with the following prosthetic interfaces.
| Implant System Prosthetic Compatibility | Platform Size/Designation |
|---|---|
| Nobel Biocare Internal Conical Connection (CC) | NP CC |
| RP CC |
The purpose of this submission is to obtain marketing clearance for NUVENTUS NV.C™ Dental Implant System endosseous dental implants and cover screws. The dental implants are intended to interface with Internal Conical Connection (CC) prosthetic components from Nobel Biocare.
A summary of the subject device implant and the associated compatible OEM prosthetic connection is provided in the table Summary of Subject Device Implant Designs.
| Subject Device ImplantDescription | PlatformDesignation | Length (mm)* | OEM Prosthetic Compatibility(K071370, K161435, K161416) | ||||
|---|---|---|---|---|---|---|---|
| Implant, NV.C, Platform NP, Ø3.5 mm | NP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, NP Platform |
| Implant, NV.C, Platform NP, Ø4.3 mm | NP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, NP Platform |
| Implant, NV.C, Platform RP, Ø5.0 mm | RP | 8.5 | 10 | 11.5 | 13 | 15 | Nobel Biocare Internal Conical, RP Platform |
The subject device dental implants have a conical abutment seating surface on the interior of the implants and internal threads so that prosthetic components may be fastened to the implant. The implant lines have two (2) abutment interface connections with internal geometric features to allow for rotational resistance of the mating abutment. All subject device implants are manufactured from Ti-6Al-4V alloy conforming to ASTM F136.
The external surface of all subject device implants is threaded, and the implant body tapers at the apical end. which includes two (2) cutting flutes. At the coronal end. the Ø4.3mm and Ø5.0mm (body diameter) subject device implants have two (2) fluted features on the body of the implant spaced 180° apart. Each fluted feature has horizontal grooves spaced vertically within the flute surface. The number of grooves within each flute ranges from 3 to 5 and the actual number is a function of the implant length. The Ø3.5mm (body diameter) subject device implants do not have fluted features. The endosseous surface of all subject implants is textured by blasting with resorbable media
The subject device implants are compatible with prosthetic components that interface with Nobel Biocare Internal Connection implants. The subject device cover screws are manufactured from Ti-6A1-4V alloy conforming to ASTM F136 and are anodized to identify the prosthetic platform (NP and RP).
The compatible Nobel Biocare Internal Conical Connection prosthetic components (NP and RP platforms) include cover screws, healing abutments, temporary abutments esthetic abutments, straight multi-unit abutment, and angled multi-unit abutments.
All subject device implants and cover screws are individually packaged and are provided sterile.
The FDA document provided pertains to a 510(k) premarket notification for a dental implant system (NUVENTUS NV.C™ Dental Implant System). This document focuses on demonstrating substantial equivalence to predicate devices through engineering analysis, non-clinical performance data (e.g., mechanical testing, biocompatibility), and a review of clinical literature. It does not present a study proving the device meets specific acceptance criteria based on AI/ML performance metrics, expert consensus, or clinical outcomes from a new study specific to an AI device.
Therefore, I cannot extract the requested information regarding acceptance criteria, AI/ML study design (sample size, data provenance, expert ground truth, adjudication, MRMC study, standalone performance), or training set details because this information is not present in the provided text.
The document discusses performance data related to the dental implant itself (e.g., sterilization, biocompatibility, mechanical testing, surface analysis), and clinical literature data to support the substantial equivalence of the implant's design features with established predicate devices. The "Clinical Testing Literature Table" outlines existing studies on predicate implants, reviewing their clinical outcomes (like bone level changes) to support the subject device's design principles. This is not the same as a study testing an AI device's performance against defined acceptance criteria.
In summary: The provided text is a 510(k) submission for a dental implant system, not an AI/ML-based medical device. Thus, the requested details specific to AI/ML device performance and validation studies are not available in this document.
Ask a specific question about this device
(232 days)
Ticare Dental Implant Systems are endosseous dental implanted in the maxilla or mandble jaw bone to serve as a union between the jaw bone and a dental prosthesis for partial or total replacement of teeth in edentulous patients. They are indicated for single-stage or two-stage procedures to support screw-retained restorations and can be used for immediate loading when good primary stability is achieved and with appropriate occlusal loading.
Small diameter (3.3mm) implants are indicated to replace a lateral incisor in the maxilla and/or a central incisor in the mandible and should not be used in the molar region. Ti care Osseous Quattro implants are indicated to support permanently fixed restorations.
Ticare Inhex and Osseous implants of 6 mm length are in a two-stage surgical procedure and are indicated for delayed loading to support permanently fixed restorations. These implants are indicated only for straight abutments.
The subject device is a dental implant system including threaded, root-form endosseous dental implants of various diameters and lengths, straight, angled, tapered, UCLA and ball abutments + retention cap as well as healing abutments, cover screws and retaining screws to secure prosthetic restorations. Implants are commercially pure Grade IV titanium except for InHex "Mini" and InHex Quattro "Mini" implants which are Grade V titanium alloy. Abutments and screws are grade V titanium alloy 6Al 4V. Retention cap is Vestakeep D4 R. All implants have an RBM surface. Abutments must be matched to implant design and platform size. Provisional and temporary abutments are for use no more than 2-3 months. Some Inhex abutment designs have a narrow neck alternative version to allow the clinician more choices for soft tissue management.
Osseous dental implants have an external hex connection and are available in three platforms, standard, mini and maxi. Mini platform comes in a diameter of 3.3mm with lengths of 10, 11.5, 13 and 15mm. Standard platform comes in diameters of 3.4, 3.75, and 4.25mm with lengths of 8, 10, 11.5, 13, 15mm (no 8mm in 3.4). There is also a 5.0 standard platform implant which comes in lengths of 6, 8, 10, 11.5, 13 and 15mm. Maxi comes in a diameter of 5.0mm and lengths of 6, 8, 10, 11.5, 13 and 15mm.
InHex dental implants have an internal hex connection and are available in three platforms, standard, mini and maxi. Mini platform comes in a diameter of 3.3mm with lengths of 10, 11.5, 13, 15mm. Standard platform comes in diameters of 3.75, and 4.25mm in lengths of 6 (not in 3.75), 8, 10, 11.5, 13 and 15mm. There is also a 5.0mm diameter implant in standard platform which only comes in a 6mm length. Maxi platform comes in a diameter of 5.0mm with lengths of 9, 10, 11.5, 13, 15mm.
The Osseous Quattro and InHex Quattro implant thread design enables them to be used in softer bone types. Osseous Quattro dental implants have an external hex connection in standard platform and are available in diameters 3.75mm and 4.25mm and lengths of 8, 10, 11.5, 13 and 15mm. InHex Quattro dental implants have an internal hex connection in mini and standard platform and are available in diameters of 3.3mm (mini platform), 3.75mm and lengths 8 (not in 3.3), 10, 11.5, 13 and 15mm.
Maxi platform implants and abutments are for use in the molar region. Mini platform implants and abutments are for use in lateral incisors and lower central incisors. Standard platform implants and abutments are for use in all tooth locations.
Osseous straight abutments come in six designs. Prepable abutments come in hexed with a gingival height of 2mm in standard, mini, and maxi platforms. Tall straight abutments come in hexed with gingival heights of 0.5, 1, 2, 3, 4mm in standard, mini and maxi platforms. Short straight abutments come in hexed and non-hexed with gingival heights of 0.5, 1, 2, 3mm in standard and mini platforms. Multitask abutments comes in maxi platform and has a gingival height of 2mm. One piece abutments are non-hexed with gingival heights of 1, 2, 3, 4mm in standard, mini, and maxi platforms. Aesthetic abutments are hexed with gingival heights of 3 or 4mm in standard platform.
Inhex straight abutments come in six designs. Prepable abutments come in hexed (not in mini) with a gingival height of 2mm in standard, mini, and maxi platforms. There is an additional hexed standard platform prepable abutment with a smooth exterior for cementing. Tall straight abutments come in hexed and non-hexed with gingival heights of 0.5, 1, 2, 3, 4mm (4mm not in mini) in standard, mini and maxi platforms. There are also tall abutments with smooth surfaces for 5.0 implants which come in gingival heights of 3 or 4mm for both standard and maxi platforms. Short straight abutments come in hexed and non-hexed with gingival heights of 0.5, 1, 2, 3mm in standard, mini and maxi platforms. Multitask abutments comes in standard and has a gingival height of 2mm. One piece abutments are non-hexed with gingival heights of 1, 2, 3, 4mm in standard and maxi platforms. Aesthetic abutments are hexed with gingival heights of 3 or 4mm in standard and maxi platform. Inhex narrow neck tall straight abutments hexed and non-hexed come in mini platform with gingival heights of 2, 3mm and maxi & standard platforms with gingival heights of 2, 3, 4mm. Narrow neck short straight abutments hexed come in mini platform with gingival heights of 2, 3m and maxi & standard platforms with gingival heights of 2, 3, 4mm.
Osseous healing screws come in gingival heights of 2, 3, 4, 5, 6, 7mm (no 2mm in mini) in standard, mini, and maxi platforms. Osseous aesthetic healing screws come in gingival heights of 3, 4, 5, 6, 7mm in standard and maxi platforms. There is an additional model in standard platform which has a tapered seating area.
Inhex healing screws come in gingival heights of 1, 2, 3, 4, 5, 6, 7mm (no 1mm in maxi) in standard and maxi platform. Inhex mini platform healing screws come in gingival heights of 3 or 4mm.There is an additional shorter design of healing screw for 5.0mm implants in gingival heights of 3, 4, 5, 6, 7mm in standard and maxi platform. Inhex aesthetic healing screws come in gingival heights of 3, 4, 5, 6, 7mm in standard and maxi platforms. Narrow neck healing screws come in mini platform with gingival heights of 2, 3, 4mm and maxi & standard platform with gingival heights of 2, 3, 4, 5mm.
Osseous angled abutments come in 15° and 20° in standard, maxi, and mini platforms.
Inhex angled abutments come in 15° and 20° in gingival heights of 1, 3, 5mm for standard and maxi platforms and gingival height of 2mm for mini platform. For 5mm implants there is also a shouldered design of 15° and 20° abutment in gingival heights of 1, 3, 5mm for standard and maxi platforms.
Osseous UCLA come in hexed and non-hexed in models for casting temporary or permanent abutments in standard, maxi and mini platforms. Osseous UCLA are for casting straight abutments with a minimum height of 4mm above the gingival collar and with a post height of no more than 9mm. The wall thickness of cast abutments should be at least 0.6mm. The angulation, wall thickness, and diameter of the gingival collar portion are not intended to be modified.
Inhex UCLA come in hexed and non-hexed in models for casting temporary or permanent abutments in standard, and maxi platforms. Inhex UCLA are for casting straight abutments with a minimum height of 4mm above the gingival collar and with a post height of no more than 9mm. The wall thickness of cast abutments should be at least 0.6mm. The angulation, wall thickness, and diameter of the portion from the gingival collar portion to the bottom of the UCLA are not intended to be modified.
Osseous ball attachments in standard, maxi and mini platforms come in gingival heights of 1, 2, 3, 4, 5.5mm (no 1mm in maxi or mini). The retention cap made of Vestakeep D4 R allows implants to be placed off vertical by no more than 10°. Ball attachments are for multiple restorations only.
Inhex ball attachments in standard and maxi platforms come in gingival heights of 1, 2, 3, 4, 5.5mm. The retention cap made of Vestakeep D4 R allows implants to be placed off vertical by no more than 10°. Ball attachments are for multiple restorations only.
Osseous tapered abutments come in six different cone configurations on the top. 10° tapered abutments come in standard platform gingival heights of 2, 3, 4, 5mm with cone type 2, mini platform gingival heights 3, 4, 5mm cone type 1 and maxi platform gingival heights of 2, 3, 4, 5mm with cone type 3. 30° tapered abutments come in gingival heights of 4 or 5mm in standard platform with cone type 4 and maxi platform with cone type 5. Straight tapered abutments come in standard platform with cone type 6 in gingival heights of 2, 3, 4, 5mm. Angled tapered abutments come in standard platform with cone type 6 with 17° in gingival heights 2, 3, 4mm and 30° in gingival heights 3, 4, 5mm. Tapered abutments are for multiple restorations only and for implants which diverge from the occlusion axis by no more than 30°.
Inhex tapered abutments come in five of the possible six cone configurations. 10° tapered abutments come in standard platform gingival heights 0, 1, 2, 3, 4, 5mm in cone type 2 and mini platform gingival heights 1, 2, 3mm in cone type 1. 10° tapered non-hexed abutments come in maxi platform gingival heights 0, 1, 2, 3, 4, 5mm in cone type 2. 30° tapered abutments in cone type 4 gingival heights 1, 2, 3, 4, 5mm come in standard platform and non-hexed maxi platform. Straight tapered abutments in cone type 6 with gingival heights 2, 3, 4, 5mm come in standard and maxi platform. Angled tapered abutments with cone type 6 come in standard and maxi platform with 17° in gingival heights of 2, 3, 4mm and 30° in gingival heights 3, 4, 5mm. Narrow neck 10° tapered abutments come in mini platform with gingival heights of 2, 3mm and standard platform with gingival heights of 2, 3, 4, 5mm. Narrow neck 10° tapered abutments non-hexed come in maxi platform with gingival heights of 2, 3, 4, 5mm. Narrow neck 30° tapered abutments come in standard platform with gingival heights of 2, 3, 4, 5mm. Narrow neck 30° tapered abutments non-hexed come in maxi platform with gingival heights of 2, 3, 4, 5mm. Tapered abutments are for multiple restorations only and for implants which diverge from the occlusion axis by no more than 30°.
Healing abutments for tapered abutments include ones for 10° tapered abutment in standard and maxi platforms which is used with both Osseous and Inhex, angled tapered abutments for Osseous and Inhex, and 30° angled tapered abutment specific ones which fit Osseous maxi platform or Osseous standard and Inhex standard & maxi platforms.
Covers for provisional restoration of tapered abutments come in designs for 10° tapered abutments for Osseous and Inhex, mini and standard platform specific designs for 10° tapered abutments for Osseous and Inhex, and a design for 30° angled tapered abutments for Osseous and Inhex.
Posts for use with tapered abutments come in temporary and permanent restoration versions. Temporary ones come in standard and maxi platform versions for 10° and 30° tapered abutments which can be used with Osseous or Inhex. A temporary restoration post is also available for angled tapered abutments of Osseous or Inhex and an Osseous specific mini platform for 10° tapered abutments. Posts for permanent restoration come in versions for angled tapered abutments used for Osseous and Inhex, 10° tapered abutments used for Osseous and Inhex in standard platform, 30° tapered abutments used for Osseous and Inhex in maxi and standard platforms, non-hexed for 10° tapered abutments used for Osseous and Inhex in maxi platform, and non-hexed for 10° tapered abutment for Osseous mini platform. Titanium interfaces (shorter posts) are available for 10° and 30° tapered abutments for Osseous and Inhex, angled tapered abutments for Osseous and Inhex and 10° tapered abutments for Osseous mini platform.
The provided document is a 510(k) Premarket Notification Submission for Ticare Dental Implant Systems. It is a regulatory document seeking to demonstrate substantial equivalence to legally marketed predicate devices, rather than a study proving the device meets acceptance criteria.
Therefore, the requested information cannot be fully provided as it pertains to a study demonstrating performance against acceptance criteria, which is not the primary focus of this type of regulatory submission.
However, I can extract information regarding the non-clinical testing performed to support substantial equivalence, which serves as a proxy for demonstrating that the device meets certain performance specifications.
Here's a breakdown of what can be inferred and what cannot:
1. A table of acceptance criteria and the reported device performance:
This information is not explicitly provided in a direct table format as acceptance criteria vs. specific quantitative performance values for each test. Instead, the document states that tests "met the criteria of the standards" or "demonstrated substantial equivalence."
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective):
- Sample Size for Test Set: Not explicitly stated for each individual test. The document mentions "worst-case scenario" for selection of implants/abutments for certain tests (e.g., shortest implant, largest abutments).
- Data Provenance: Not explicitly stated. The tests were performed by the manufacturer, Mozo Grau, S.A., based in Spain.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience):
This is not applicable as the document describes non-clinical bench testing, not clinical studies involving expert annotation or ground truth establishment in a medical imaging context.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:
Not applicable, as this is related to clinical interpretation and ground truth establishment, which did not occur in this non-clinical testing.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
Not applicable. This is a non-clinical submission for a dental implant system, not an AI/software device involving human readers or comparative effectiveness studies of that nature.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
Not applicable, as this is not an AI/software device.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc):
Not applicable. The "ground truth" in this context is adherence to validated engineering and material standards for dental implants.
8. The sample size for the training set:
Not applicable, as this is not an AI/machine learning model.
9. How the ground truth for the training set was established:
Not applicable.
However, I can summarize the non-clinical testing performed as evidence of meeting performance expectations (implicitly serving as 'acceptance criteria' in a regulatory context for substantial equivalence):
Summary of Non-Clinical Data / Testing Performed:
The Ticare Dental Implant Systems underwent various bench tests to demonstrate conformance to performance specifications and requirements, following the FDA guidance "Class II Special Controls Guidance Document: Root-form Endosseous Dental Implants and Endosseous Dental Implant Abutments." The results of these tests were reported to have met the criteria of the standards and demonstrated substantial equivalence to the predicate devices.
Non-Clinical Tests Performed (and how they relate to acceptance):
| Test Category | Standard(s) / Description | Reported Performance / Outcome (Implicit Acceptance) |
|---|---|---|
| Mechanical / Durability | Fatigue testing: Under worst-case scenario in accordance with ISO 14801. | "met the criteria of the standards and demonstrated the substantial equivalence with the predicate device." |
| Sterilization | Gamma Sterilization Validation: ISO 11137-1 and ISO 11137-2 (for devices delivered sterile). A Sterility Assurance Level (SAL) of 10^-6 was validated. | "The validation took into account the worst-case scenario, and the results prove equivalence to the predicate device." |
| Steam Sterilization Validation: ISO 17665-1 (for devices delivered non-sterile, e.g., abutments, for end-user sterilization). Two steam sterilizations were conducted on worst-case abutments. | "The results showed equivalence to the predicate device." | |
| Shelf-Life | Shelf-life testing: ASTM F1980 (for accelerated aging of sterile barrier systems and medical devices). | "The worst-case scenario was tested, and the results demonstrated that the devices are equivalent to the predicate devices. The shelf-life is guaranteed up to 5 years, and the devices will function adequately as intended without any degradation during the shelf-life." |
| Packaging Integrity | Packaging Tests: ASTM F88 (seal strength of flexible barrier materials) and ASTM F1929 (dye penetration for seal leaks). | "The results guarantee shelf life up to 5 years under transport and storage conditions during the shelf-life of <55ºC and humidity <75%." |
| Absence of Microbial Growth (Post-sterilization) | Sterility Tests: ISO 11737-2 (Microbiological methods). | "no microbial growth being detected." |
| Biocompatibility | Biocompatibility Tests: ISO 10993-1, ISO 10993-5 (cytotoxicity) and ISO 10993-23 (intracutaneous reactivity). Performed on several samples from Mozo Grau Dental Implant System and Abutments chosen as worst-case scenarios for materials, surfaces, and geometry. | "The result demonstrated the biocompatibility of the materials used." |
| Endotoxin Level | Bacterial Endotoxin Testing (LAL): USP <85> and USP <161>. Performed on worst-case product. | "The test results have met the acceptance criteria and demonstrated the substantial equivalence with the predicate device." |
| Surface Characterization | SEM (Scanning Electron Microscope) and EDS (Energy-dispersive X-ray spectroscopy): To evaluate final cleaning after surface treatment. | "Implants are completely clean with no residues from the blasting processes on the implant surface, confirming the effectiveness of the cleaning process applied to Mozo Grau dental implants." |
| Dimensional & Mechanical (Short Implants) | Dimensional and mechanical tests: Performed for the shortest implant (6 mm long) from Mozo Grau's system, compared to K172576. This included Bone-to-Implant Contact (BIC) under bone level and 3mm resorption conditions, insertion/removal torque, and pull-out strength. | "All test results have indicated that the subject device is less critical, having more BIC in all conditions, higher insertion and removal torque and higher pull-out forces, indicating favorable substantial equivalence." (i.e., performance met or exceeded predicate/expectations, indicating safety and effectiveness comparable to existing devices). |
| MR Safety | Non-clinical worst-case MRI review: Evaluation of metallic Ticare devices in the MRI environment using scientific rationale and published literature. Rationale addressed magnetically induced displacement force and torque. | This review was performed to support the safety labeling related to MRI compatibility. (No direct "acceptance criteria met" statement, but the performance of the review supports the safe use.) |
Ask a specific question about this device
(87 days)
The Luna Dental Implant System is intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as artificial teeth, and to restore the patient's chewing function. The Luna Dental Implant System is intended for delayed loading and immediate loading is possible when good primary stability is achieved and with appropriate occlusal loading.
The Luna Dental Implant System is a device of pure titanium (ASTM F67) and titanium alloy (ASTM F1136) intended to be surgically placed in the bone of the upper or lower arches to provide support for prosthetic devices, such as artificial teeth, and to restore the patient's chewing function. It consists of fixture, abutment, mount screw, cover screw. This 510k is intended to add the new models of the following abutments to the Luna Dental Implant System: Healing Abutment I, Duo Abutment, Duo Plus Abutment, Temporary Abutment.
The document provided does not contain information about the performance of an AI/ML powered device, but rather pertains to the 510(k) clearance of the Luna Dental Implant System, which is a traditional medical device (dental implants and their components).
Therefore, I cannot extract the requested information regarding acceptance criteria and performance studies for an AI/ML powered device from this document. The document describes the mechanical and material characteristics of dental implants and their substantial equivalence to previously cleared predicate devices, not AI/ML model performance.
To answer your request, I would need a document describing the study and acceptance criteria for an AI/ML powered medical device.
Ask a specific question about this device
(79 days)
NobelProcera Zirconia Implant Bridge (previously cleared per K202452) The NobelProcera® Zirconia Implant Bridge are indicated for use as a bridge anatomically shaped and/or framework in the treatment of partially edentulous jaws for the purpose of restoring chewing function.
TiUltra Implants and Xeal Abutments (previously cleared per K202344) NobelActive TiUltra NobelActive TiUltra implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting tooth replacements to restore patient esthetics and chewing function. Nobel Active Tilltra implants are indicated for single or multiple unit restorations in splinted applications. This can be achieved by a 2-stage or 1-stage surgical technique in combination with immediate, early or delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. NobelActive TiUltra 3.0 implants are intended to replace a lateral incisor in the maxilla and/or a central incisor in the mandible. Nobel Active TiUltra 3.0 implants are indicated for single-unit restorations only. NobelReplace CC TiUltra NobelReplace CC TiUltra implants are endosseous dental implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. The NobelReplace CC TiUltra implants are indicated for single or multiple unit restorations. The NobelReplace CC Tilltra implants can be used in splinted or non-splications. The NobelReplace CC TiUltra implant may be placed immediately and put into immediate function provided that initial stability requirements detailed in the manual are satisfied. NobelParallel CC TiUltra NobelParallel CC TiUltra implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting replacements to restore patient esthetics and chewing function. NobelParallel CC TiUltra implants are indicated for single or multiple restorations in splinted applications. This can be achieved by a 2-stage or 1-stage surgical techniques in combination with immediate, early of delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. Implants with < 7 mm length are for delayed loading only when appropriate stability has been achieved. MUA Xeal: The MUA Xeal is a pre-manufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation. On1 Base Xeal: The On1 Base Xeal device is a premanufactured prosthetic component directly connected to an endosseous implant and it is intended for use in prosthetic rehabilitation. The On1 Universal Abutments consist of three major parts. Specifically, the On1 Base Xeal, the On1 Universal Abutment, and the mesostructure components make up a multi-piece abutment. The system integrates multiple components of the digital dentistry workflow: scan files from Intra-Oral Scanners, CAM software, ceramic material, milling machine and associated tooling and accessories.
Onl Universal Abutment (previously cleared by K181869) The Onl 11M device is a premanufactured prosthetic component directly connected to an endosseous implant and it is intended for use in prosthetic rehabilitation. The Onl Universal Abutunent consist of three major parts. Specifically, the Onl Base, the Onl Universal Abutment, and the mesostructure components make up a multi-piece abutment. The system integrates multiple components of the digital dentistry workflow: scan files from Intra-oral Scanners, CAD software, CAM software, ceramic material , milling machine and associated tooling and accessories.
TREFOIL System (previously cleared per K172352) The TREFOIL System is used to restore chewing function in fully edentulous mandibles. The three implants of the Trefoil Implants are placed between the mental foramina in fully edentulous mandibles in a 1-stage surgical technique combined with an immediate function loading protocol, provided sufficient primary stability for the selected technique is achieved. In cases where sufficient primary stability for two implants or more is not reached, the implants along with the Framework may also be used with an early or delayed loading protocol. The following prerequisites must be fulfilled: -Adequate quantity of bone (minimum height of 13 mm implant and 14.5 mm for 13.0implant and minimum width of 6-7 mm). -Adequate mouth opening (minimum 40 mm) to accommodate the guided surgery instruments. -Implant-supported prosthetics seated directly on dedicated implants
Healing Cap Multi-Unit Titanium (previously cleared per K171142) The Healing Cap Multi-unit Titanium is a premanufactured prosthetic component to be directly connected to the dental abutment during soft tissue healing to protect the internal connection of the abutments and prepare the soft tissue for the prosthetic procedure. Maximum intra-oral use is 180-days.
TREFOIL System (previously cleared per K170135) The Trefoil system is used to restore chewing function in fully edentulous mandibles. The three implants of the Trefoil system are placed between the mental foramina in fully edentitious mandibles in a 1-stage surgical technique combined with an immediate function loading protocol, provided sufficient primary stability for the selected technique is achieved. In cases where sufficient primary stability of one or more implants is not reached, the implants along with the bar may also be used with an early or delayed loading protocol. The following prerequisities must be fulfilled: - Adequate quantity of bone (minimum width of 7 mm; and minimum heights of 13 mm implant and 14.5 mm for 13.0 mm implant) -Adequate mouth opening (minimum 40 mm) to accomodate the guided surgery intruments. -Implant-supported prosthetics seated directly on dedicated implants
Onl Concept (previously cleared per K161655) The On 17M device is a premanufactured prosthetic component directly connected to an endosseous implant and it is intended for use in prosthetic rehabilitation.
NobelZygoma 0° (previously cleared per K 161598) Nobel Zygoma implants are endosseous dental implants intended to be surgically placed in the bone of the upper jaw arch to provide support for prosthetic devices, such as artificial teeth, in order to restore patient esthetics and chewing function. The NobelZygoma Implants are appropriate for immediate loading when good primary stability is achieved and with appropriate occlusal loading.
Temporary Snap Abutment (previously cleared per K161435) The Temporary Snap Abutment is intended to be used to fabricate and support provisional restorations that and in creating an esthetic emergence through the gingiva during period and prior to final restoration. The Temporary SnapAbutment can be used for cement retained or screw-retained provisional restorations. The abutments can be used for single-unit and multi-unit restorations. Use of the Temporary Snap Abutiment is not to exceed one hundred and eighty(180) days.
Multi-Unit Abutment Plus (previously cleared per K161416) The Multi-unit Abutment Plus is a pre-manufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation.
NobelProcera HT ML FCZ Implant Bridge and Framework (previously cleared per K160158) The NobelProcera HT ML FCZ (full contour zirconia) and framework Implant Bridge are indicated for use as a bridge anatomically shaped and/or framework in the treatment of partially or totally edentulous jaws for the purpose of restoring chewing function.
NobelSpeedy Groovy (previously cleared per K160119) NobelSpeedy® Groovy implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting tooth replacements to restore patient esthetics and chewing function. NobelSpeedy® Groovy implants are indicated for single or multiple unit restorations in splinted applications. This can be achieved by a 2-stage or 1-stage surgical technique in combination with immediate, early or delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. Implants allow also for bicortical anchorage in cases of reduced bone density. NobelSpeedy® Groovy implants 20, 22, 25 mm when placed in the maxilla are only indicated for multiple unit restoration in splinted applications that utilize at least two implants.
TREFOIL System (previously cleared per K152836) The TREFOIL System is used to restore chewing function in fully edentulous mandibles. The three implants of the TREFOIL System are placed between the mental foramina in fully edentulous mandibles in a 1-stage surgical technique combined with an immediate function loading protocol, provided sufficient primary stability for the selected technique is acheved. In cases where sufficient primary stability for two implants or more is not reached, the implants along with the Framework may also be used with an early or delayed loading protocol. The following prerequisites must be fulfilled: -Adequate quantity of bone (minimum height of 13 mm and minimum width of 6-7 mm). -Adequate mouth opening (minimum 40 mm) to accommodate the guided surgery instruments. -Implant-supported prosthetics seated directly on dedicated implants
NobelZygoma 45° (previously cleared per K152093) Nobel Biocare's Zygoma implants are endosseous dental implants intended to be surgically placed in the upper jaw arches to provide support for prosthetic devices, such as artificial teeth, in order to restore patient esthelies and chewing finction. The Zygoma Implants may be put into immediate function provided that stability requirements detailed in the directions for use are satisfied.
NobelActive Wide Platform (WP) ( previously cleared per K133731) Nobel Biocare's NobelActive implants are endosseous implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient estherics and chewing function. Nobel Biocare's NobelActive implants are indicated for single or multiple unit restorations in splinted or non-splinted applications. Nobel Biocare's NobelActive implants are intended for immediate loading when good primary stability is achieved and with appropriate occlusal loading.
NobelProcera Overdenture Bar (previously cleared per K132749) The NobelProcera Overdenture Bar is indicated for use as an overdenture bar that attaches to implants in the treatment of partially or totally edentulous jaws for the purpose of restoring function.
NobelProcera Angulated Screw Channel Abuttment Conical Connection (previously cleared per K 132746) The NobelProcera Angulated Screw Channel Conical Connection are premanufactured prostheire components directly connected to endosseous dental implants and are intended for use as an aid in prosthetic rehabilitation.
Nobel Biocare PEEK Abutments (previously cleared per K120954) The Nobel Biocare PEEK Abuments are premanufactured prosthetic components directly connected to the endosseous dental implants and are intended for use as an aid in prosthetic rehabilitation.
NobelActive 3.0 (previously cleared per K111581) The Nobel Active 3.0 implant is indicated for use in the treatment of missing maxillary lateral incisors or the mandibular central and lateral incisors to support prosthetic devices, such as artificial teeth, in order to restore chewing function in partially edentulous patients. The NobelActive 3.0 implants may be put into immediate finction provided that stability requirements detailed in the manual are satisfied.
NobelActive 3.0mm (previously cleared per K102436) The NobelActive 3.0mm implant is indicated for use in the treatment of missing maxillary lateral incisors or the mandibular central and lateral incisors to support prosthetic devices, such as artificial teeth, in order to restore chewing function in partially edentulous patients. The NobelActive 3.0 implants may be put into immediate function provided that stability requirements detailed in the manual are satisfied.
NobelProcera Implant Bridge Zirconia (previously cleared per K091907) The NobelProcera Implant Bridge Zirconia is indicated for use as a bridge framework in the treatment of partially or totally edentulous jaws for the purpose of restoring chewing function.
NobelProcera Zi Abutments (previously cleared per K091904) The NobelProcera Zi Abutments are premanufactured prosthetic components directly connected to endosseous dental implants and are intended for use as an aid in prosthetic rehabilitation.
NobelProcera Ti Abutment (previously cleared per K091756) The NobelProcera Ti Abutments are premanufactured prosthetic components directly connected to endosseous dental implants and are intended for use as an aid in prosthetic rehabilitation.
NobelActive 8.5 mm & 18.0 mm (previously cleared per K083205) Nobel Biocare's Nobel Active implants are endosseous implant intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. Nobel Biocare's NobelActive implants are indicated for single or multiple unit restorations in splinted or non-splinted applications. Nobel Biocare's Nobel ective implants may be placed immediately and put into immediate function provided that initial stability requirements detailed in the manual are satisfied.
NobelReplace Hexagonal Implants (previously cleared per K073142) Nobel Biocare's NobelReplace Hexagonal Implants are endosseous implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. The NobelReplace Hexagonal Implants are indicated for single or multiple unit restorations. The NobelReplace Hexagonal Implants can be used in splinted or non-splinted applications. The NobelReplace Hexagonal Implants may be placed immediate function provided that initial stability requirements detailed in the manual are satisfied.
NobelActive Multi Unit Abutment (previously cleared per K072570) NobelActive Multi Unit Abutment is a pre-manufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation.
NobelActive Internal Connection Implant (previously cleared per K071370) Nobel Biocare's Nobel Active implant are endosseous implant intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. Nobel Biocare's NobelActive mplants are indicated for single or multiple unit restorations in splinted or non-splinted applications. Nobel Biocare's NobelActive implants may be placed immediately and put into immediate function provided that initial stability requirements detailed in the manual are satisfied.
Adapter PS (previously cleared per K063592) Nobel Biocare's Adapter PS is a premanufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation.
Zygoma Angled Abutments (previously cleared per K052885) The Nobel Biocare Zygoma Angled Abutment is intended to be used as a prosthetic component directly connected to the implant and is intended for use as an aid in prosthetic rehabilitation.
Zygoma TiUnite (previously cleared per K050641) Nobel Biocare's zygoma TiUnite is a tianium, endosseous implant with components intended to be placed in the upper jaw arch to provide support for prosthetic devices such as artificial teeth in order to restore patient esthetics and chewing function, Nobel Biocare's Zygoma TiUnite inclueds endosseous implants, a cover screw, healing abutments, and multi unit abutments.
Nobelspeedy Implants (previously cleared per K050406) NOBELSPEEDY TM Implants are root-form endosseous implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. Nobel Biocare's NOBELS PEEDY TM Implants are indicated for single or multiple unt restorations in splinted or non-splications. Nobel Biocare NOBELSPEEDY TM Implants may be placed immediately to put into immediate function providing that the initial stability requirements detailed in the surgical manuals are satisfied. NOBELSPEEDY TM Implants are indicated for use in soft bone or whenever immediate or early loading is applied. The NOBELSPEEDY TM Implants incorporate a groove on the implant thread and are preferred over models without the groove in these soft bone indications because bone forms more rapidly in the groove than on other parts of the implant resulting in increased stability when compared to non-grooved implants. In addition, the NOBELSPEEDY TM Implants are preferred in these soft bone indications because bone formation on the Til nore rapid and greater than on machined surface implants resulting in better maintenance of initial implant stability, faster and stronger osseointegration, and higher success rates. NOBELSPEEDY TM Implants may be tilted up to 450. When used with angulations between 300 and 450 a minimum of four implants must be used and splinted.
Groovy Implants (previously cleared per K050258) Nobel Biocare's Groovy Implants are root-form endosseous implants intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. Nobel Biocare's Groovy Implants are indicated for single or multiple unit restorations in splinted or non-splinted applications. Nobel Biocare Groovy Implants may be placed immediately to put into immediate function providing that the initial stability requirements detailed in the surgical manuals are satisfied. Groovy implants are indicated for use in soft bone in posterior regions or whenever immediate or early loading is applied. The Groovy implants incorporate a groove on the implant thread and are preferred over models without the grove in these soft bone indications because bone forms more rapidly in the groove than on other parts of the implant resulting in increased stability when compared to non-grooved implants.
Procera Implant Bridge, models 15-1001, 15-1002, 15-1052 (previouly cleared per K041236) The Procera Implant Bridge is indicated for use as a bridge framework in the treatment of partially or totally edentulous jaws for the purpose of restoring chewing function. The Procera Implant Bridge can be used at the implant or abutment level of the following implant systems: Nobel Biocare Branemark System Nobel Biocare Replace SelectThe Procera Implant Bridge can be used at the implant level of the following implant systems: Nobel Biocare Replace Nobel Biocare Steri-Oss HL Nobel Biocare Novum Straumann Dental Implant System Regular neck 4.8 Straumann Dental Implant System Wide neck 6.5 The Procera Implant Bridge can be used at abutment level of the following implant systems: Nobel Biocare ARK abutment for Teeth-in-Hour concept.
Various Branemark System Implants-Immediate Function Indication previously cleared per K022562 The Branemark System implants are for single-stage or two-stage surgical procedures and cement or screw retained restorations. The Branemark System implants are intended for immediate placement and function on -single tooth and/or multiple tooth applications recognizing stability (type I or n bone) and appropriate occlusal loading, to restore chewing function. Multiple tooth applications may be splinted with a bar.
BRANEMARK NOVUM previously cleared per K000018 The "Immediate Loading Treatment Protocol" is intended for use with selected Brânemark System Implants, I hese implants, when placed using the Immediate Loading Treatment Protocol, are indicated for use only in the anterior mandible between the mental foramina.
Amorphous Diamond Coated Screw (previously cleared per K992538) The Amorphous Diamond Coated Screw is used to retain prosthetic components to dental implants or to other proshetic components. The amorphous diamond coating will add a greater pre-load to the screw, which in turn help prevent the screw and prosthetic components from loosening.
Procera® Preparable Abutment System (previously cleared per K974150) Nobel Biocare's Procera® Preparable Abutment System is a set of screw retained preparable abutments that are secured to an endosseous implant and are intended to function as an anchor to which prosthetic devices, such as artificial teeth, may be attached using dental cement to restore a patient's chewing function.
AurAdapt Abutment System (previously cleared per K972475) Nobel Biocare's AurAdapt Abutment System is a set of screw retained modifiable gold alloy abutnents which are secured to an endosseous implant and is intended to function as an anchor to which prosthetic devices, such as artificial teeth, may be attached using dental cement to restore a patient's chewing function.
Branemark System - Zygomaticus Fixture System (previously cleared per K970499) The Nobel Biocare Brallemark System - Zygomaticus Fixture System is an endosseous implant with components made of titanium intended to be placed in the upper jaw arch to prosthetic devices such as artificial teeth, and to restore the patient's chewing function. The system includes Fixtures, Drills, Hand Instruments, Cover Screws and Accessories.
Bio-Esthetic Indirect Abutment (previously cleared per K970073) The intended use of Steri-Oss' Bio-Esthetic Indirect Abutment retained with a lingual retaining screw, is to provide a stable, secure foundation upon which a prosthetic appliance (the purpose of which is restoration of masticatory function in the edentulous and partially edentulous patient) can be attached, yet remain retrievable.
Steri-Oss' Tiodized' screws (previously cleared per K964739) The intended use for Steri-Oss' Tiodized screws is the screw retained attachment of prosthetic components to one another and to dental implants.
Replace Titanium Implant System (previously per K964220) The implant is indicated for use in restoring masticatory function in the edentulous and/or partially edentulous patient.
STERI-OSS GOLD ATTACHMENT SYSTEM (previously cleared per K963945) Steri-Oss Gold Attachment System, the intended use of this device is for the screw retained attachment of prosthesis to abutments is for the screw and/or abutments to retained implants.
17° Angulated Abutment (previously cleared per K961736) The Nobelpharma 17° Angulated Abutment is intended to be used in edentulous patients as an anchor to support a prosthesis
MirusCone Abutment System (previously cleared per K961728) The Nobelpharma MirusCone Abutment System is intended to be used in edentulous patients as an anchor to support a prosthesis.
Branemark System- Healing Abutment (previously cleared per K925779) The Nobelpharma Branemark System- Healing Abutment is intended to be used as a temporary component to an endosseous implant to allow healing of the soft tissue.
Branemark System Estheticone Abutment complete (previously cleared per K925777) The Nobelpharma Branemark System - EsthetiCone Abutment Complete is intended to be used as a component to an endosseous implant.
Branemark Systems - Titanium CoverScrew (previously cleared per K925771) The Nobelpharma Branemark Systems - Titanium CoverScrew is intended to an endosseous implantprior to the first healing period to protect the innerthread of the fixture and prevent bone overgrowth.
Branemark System Abutment Complete (previously cleared per K925769) The Nobelpharma Branemark System Abutment Complete is intended to be used as a component to an endosseous implant to support a prosthetic device.
Branemark System Temporary Solutions (previously cleared per K925766) The Nobelpharma Branemark System Temporary Solutions are intended to be used in the same manner asthe permanent counterpart except that the former are usedto support transitional reconstructions.
Branemark System Standard 3.75 mm Fixture (previously cleared per K925765) All Nobelpharma fixtures for implant are indicated for use in the anterior and posterior regions of the maxilla and mandible. The fixtures are designed to support full arch reconstructions (fixed bridges and overdentures), partial arch reconstructions (fixed bridges) and single tooth replacement.
Brânemark System Self-Tapping Fixture (previously cleared per K925762) The "Immediate Loading Treatment Protocol" is intended for use with selected Branemark System Implants. These implants, when placed using the Immediate Loading Treatment Protocol, are indicated for use only in the anterior mandible between the mental foramina.
Titanium Plasma Spray Cylindrical Implant (previously cleared per K911592) The Steri-Oss Titanium plasma sprayed cylindrical dental implant device are indicated for use in the mandible and maxilla for denture retention in the edentulous and partially edentulous patient.
Angulated Abutment, Complete, Titanium SCDA102 (previously cleared per K905434) Devices are used as connection with osseointegration fixtures.
Not Found
This document is a 510(k) premarket notification decision letter from the FDA to Nobel Biocare AG regarding their Dental Implant Systems Portfolio - MR Conditional. It explicitly states that the letter covers indications for use and general controls, but does not contain information about acceptance criteria or performance studies for the device itself.
Therefore, I cannot provide the requested information for the following reasons:
- Acceptance Criteria and Performance Data: The document is a regulatory clearance letter, not a clinical study report. It does not contain acceptance criteria for device performance, nor does it present any data from studies proving the device meets particular criteria. The letter confirms substantial equivalence to legally marketed predicate devices, which means the FDA has determined the device is as safe and effective as a previously cleared device, not that specific performance metrics were tested and met in a new study.
- Study Details (Sample size, data provenance, experts, adjudication, MRMC, Standalone, Ground Truth, Training Set): Since no performance study data is included in this FDA 510(k) clearance letter, none of these details can be extracted. The document refers to various previously cleared predicate devices (e.g., K202452, K202344, K181869), but it doesn't describe the studies that led to their clearance.
In summary, the provided text does not contain the information necessary to describe acceptance criteria or a study proving the device meets those criteria.
Ask a specific question about this device
(435 days)
The BoneTrust® Mini and Mini+ Implants are intended to be loaded immediately in partially or fully edentulous mandibles and maxilla to serve as temporary support for provisional prosthetic device during the healing phase of permanent endosseous dental implant(s). Use of BoneTrust® Mini and Mini+ Implants is not to exceed one hundred and eighty (180) days.
BoneTrust® Mini Esthetic abutments and BoneTrust® Mini Crown Base Abutments are intended for use with BoneTrust® Mini / Mini+ Dental Implants to provisional prosthetic reconstructions during the healing phase of permanent endosseous dental implants. Use of BoneTrust® Mini Esthetic abutments and BoneTrust® Mini Crown Base Abutments is not to exceed one hundred and eighty (180) days.
BoneTrust® Mini Ball Attachments are intended to be used with BoneTrust® Mini / Mini+ Dental Implants to support and/or retain provisional removable dental prostheses during the healing phase of permanent endosseous dental implants. Use of BoneTrust® Ball Attachments is not to exceed one hundred and eighty (180) days.
The BoneTrust® Mini Implant System is a two-piece dental implant system including various sizes of threaded root-form dental implants and abutments to provide temporary support of prosthetic restorations in edentulous or partially edentulous patients during the healing phase of permanent endosseous dental implant(s). The maximum duration of intraoral use of all members of the BoneTrust® Mini Implant System is 180 days.
The provided text describes a 510(k) premarket notification for the BoneTrust® Mini Implant System. This submission focuses on demonstrating substantial equivalence to previously cleared predicate devices, rather than proving a new device meets specific performance acceptance criteria through the types of studies typically conducted for novel AI/ML-driven medical devices.
Therefore, the requested information about acceptance criteria tables, sample sizes for test sets, expert ground truth, adjudication methods, MRMC studies, standalone performance, training sets, and ground truth establishment is not present in this document. This document primarily relies on a comparative analysis of:
-
Indications for Use: The BoneTrust® Mini Implant System's intended use is compared to that of primary and reference predicate devices (EM Provisional, Sterngold 2.2mm Angled Micro ERA Dental Implant System, BoneTrust® Implant Systems, MIS LOCKIT Abutments System, Nobel Biocare AB, OSSTEM Implant Co. Ltd.). The conclusion is that the indications are "Similar to primary predicate device" or "Substantially Equivalent." The additional limitation of implant duration (max 180 days) is noted as not changing the intended use.
-
Technological Characteristics: Detailed comparisons are made regarding:
- Implant Material: Titanium Grade 4 ASTM F67, identical to reference device K182313.
- Implant Type and Design: Screw-type, straight body/tapered body, self-tapping, with thread, two-piece design. Largely identical or similar to predicate/reference devices.
- Implant-Abutment Connection: External Torx Implant/Abutment fixture. Differences from some predicates (one-piece design or different connection types) are stated not to raise concerns regarding safety and effectiveness.
- Implant Dimensions: The proposed device's sizes (diameters and lengths) are stated to be "within range of primary predicate device."
- Surface Treatment: Machined / Microstructured blasted etched surface passivated, stated as identical to K191751 and K182313.
- Sterilization: Beta Radiation, identical to K182313.
- Abutment Material, Surface, Size, Connection, Angulation, and Sterility: Comparisons are made to various predicate/reference abutments, with conclusions of "Identical" or minor differences not raising safety/effectiveness concerns.
- Ball Attachment Material, Surface, Size, Connection, Angulation, and Sterility: Similar comparisons are made, concluding "Identical" or differences not impacting safety/effectiveness.
-
Non-Clinical Testing Summary:
- Clinical Studies: None were performed.
- Biocompatibility: Relied on previous clearance of BoneTrust® Implant System (K182313) due to identical manufacturing process and materials. Periodic bacterial endotoxin testing (USP <85>) is performed, with historical data showing acceptable levels.
- Fatigue Testing: Not deemed necessary as per FDA Guidance Document for Class II Special Controls, because the system does not contain angulated abutments.
- Sterilization: Beta-radiation sterilized (SAL 10⁻⁶) according to ISO 11137-1:2006 and 11137-2:2013. Efficacy reliant on K182313 due to identical process. Unsterile prosthetic components are intended for end-user sterilization, with methods identical to K182313.
- Shelf Life: 5 years, reliant on K182313 due to identical packaging system.
- Implant Surface Analysis: Energy Dispersive X-ray Spectroscopy (EDX) and SEM analysis were conducted, and results support substantial equivalence to legally marketed predicate devices.
In summary, there is no study described in this document that proves the device meets specific acceptance criteria in the manner requested, because the submission focuses on demonstrating substantial equivalence to existing devices through comparative analysis and non-clinical testing rather than de novo clinical or performance studies with defined acceptance criteria for a novel AI/ML device.
Ask a specific question about this device
(205 days)
The BEGO Semados® RS/RSX implant is indicated for single or multiple unit restorations on splinted or non-splinted applications both in the upper and lower jaw. This can be achieved by a 2-stage or 1-stage surgical technique in combination with immediate, early or delayed loading on sufficient primary stability and appropriate occlusal loading.
The BEGO Semados® RS/RSX implant 3.0 is only indicated for single unit restorations of the lower lateral, central incisors or upper lateral incisors.
The healing posts are indicated for patients treated with BEGO Semados® RS/RSX implants for the time during healing of the surrounding soft tissue.
The abutments are indicated for patients treated with BEGO Semados® RS/RSX implants as an aid in prosthetic rehabilitation.
PS ITA, PS TTiA and PS TTiA NH are intended to be used for a maximum period of 6 months.
The BEGO Semados® RS/RSX Implant System consists of implants, healing posts and abutments.
BEGO Semados® RS/RSX implants are self-tapping, conical endosseous dental implants made of commercially pure titanium Grade 4. In contrast to the RSX implant family, the RS implant family has a 0.5 mm machined neck region. BEGO Semados® RS/RSX implants are marketed together with cover screws and insertion posts.
The healing posts are sterile packaged Titanium Grade 5 dental healing abutments that are available in two different sizes. Healing posts can be used either to shape the soft tissue after sub-merged healing of an implant (two-stage) or to keep the shape of the soft tissue after having placed the implant (one-stage).
The abutments are prefabricated prosthetic components made of Titanium Grade 5 directly connected to BEGO Semados® implants with Platform Switch design such as BEGO Semados® RS/RSX implants. They are delivered non-sterile but have to be sterilized by the end-user. They serve as an aid in temporary (provisional) and permanent prosthetic rehabilitation. The abutments are used for single or multiple tooth restorations. There are two types of abutments regarding the duration of use: provisional abutments intended for a limited period of ≤ six months and permanent abutments. The abutments are marketed with the compatible prosthesis and a technician screw.
The MultiPlus system consists of the PS MultiPlus abutments, the MultiPlus Titanium abutment, the MultiPlus Healing posts, the MULTI PLUS UNIVERSAL component and various supporting tools. The MultiPlus system is intended for occlusal screw-retained bridge, full dentures and bar constructions in the mandible and maxilla.
The Easy-Con system consists of the PS Easy-Con abutment and the Easy-Con laboratory set. The Easy-Con system is used to retain full supported dentures in the mandible or maxilla on two to four implants.
The provided document is a 510(k) Premarket Notification for the BEGO Semados® RS/RSX Implant System. This type of submission focuses on demonstrating substantial equivalence to a legally marketed predicate device, rather than proving the safety and effectiveness of a novel device through extensive clinical trials with pre-defined acceptance criteria.
Therefore, the document does not contain the kind of information requested in your prompt (e.g., acceptance criteria for an AI/ML model's performance, sample sizes for test sets, expert ground truth establishment, MRMC studies, or training set details). The "performance data" section (Section 11) refers to non-clinical testing of the physical implant system, such as biocompatibility, mechanical properties (fatigue, corrosion), and sterilization, typical for traditional medical devices. Section 12 explicitly states that "no human clinical testing was required."
This submission is about demonstrating that a new dental implant system is as safe and effective as existing, legally marketed implant systems, based on similar technology, materials, and non-clinical performance characteristics. It is not an AI/ML device submission.
Thus, I cannot extract the requested information as it is not present in the provided text.
Ask a specific question about this device
(360 days)
The Implant-One™ System is indicated for surgical placement in partially or completely edentulous upper or lower jaws to provide a means for prosthetic attachment to restore a patient's chewing function. The Implant-One™ system is indicated for immediate loading only when primary stability is achieved and with the appropriate occlusal loading.
Endosseous implants are self-tapping and threaded, and offered having root-form or wide thread forms. Root-form implant diameters range from 3.25mm to 5.5mm having lengths from 8mm to 14mm. Wide thread implant diameters are available in 4.1 and 4.5mm (8mm to 14mm lengths), 5.5mm (8mm to 12mm lengths) and 6.5mm (8mm to 10mm lengths). Cover screws and healing caps provide protection to the threads of the abutment connection during endosseous and gingival healing. Cover screws are pre- packaged with each implant. Healing caps are provided as an alternative to the cover screw and are packaged separately. The Implant-One™ dental implants and cover screws are provided sterile. Not all abutments can be used for single-unit restorations. The conical, angled conical, ball, locator and glueless abutments are intended only for multi-unit loaded restorations. The ball, locator and glueless abutments are to be used in fully removable dentures. The conical and angled conical abutments are to be used in screw retained dentures and with the titanium sleeve for screw retention. The final design parameters for the custom blank abutment are as follows: maximum total height, 12.5mm; minimum/maximum gingival height, 0.5mm/6mm; minimum post height, 4mm; maximum angulation, 30°; minimum wall thickness, 0.78 (at 1.5mm above the proximal end); minimum diameter, 3.75 mm for the 300 Series, 4.25 mm for the 300 Series and 4.75 mm for the 500 Series.
The provided text is a 510(k) summary for the Implant-One™ System, a dental implant device. It demonstrates the device's substantial equivalence to existing legally marketed predicate devices through non-clinical performance data.
However, the document does not describe a study involving an algorithm, AI assistance, human readers, or any form of "acceptance criteria" related to diagnostic performance or accuracy as one would expect for an AI/ML medical device.
Instead, the "acceptance criteria" and "study" described in this document pertain to engineering and biocompatibility performance of a physical medical device (dental implants and abutments), not a software or AI-driven system.
Therefore, for each of the requested points, the answer is that the information is not applicable (N/A) in the context of this document, as it describes a physical dental implant system and not an AI/ML device that would have such performance criteria.
Here's how to address each point based on the provided text:
Acceptance Criteria and Device Performance (Based on Device Type - Dental Implants)
Since this is for a physical dental implant system, the "acceptance criteria" are related to mechanical integrity, biocompatibility, sterilization, and packaging/shelf-life, rather than diagnostic accuracy. The "device performance" indicates that the device met these criteria by demonstrating substantial equivalence to predicates.
1. A table of acceptance criteria and the reported device performance
| Acceptance Criteria Category | Specific Acceptance Criteria (Demonstrated Equivalence To) | Reported Device Performance |
|---|---|---|
| Mechanical Performance | ISO 14801 (for worst-case construct performance) | "Non-clinical mechanical testing of the worst case Implant-One™ System construct was performed according to ISO 14801 and demonstrated that the Implant-One™ system performs as well as or better than the predicate devices." |
| Biocompatibility | ISO 10993-5 | "Biocompatibility testing was performed according to ISO 10993-5 and demonstrated substantial equivalence." |
| Sterilization | ISO 11137 and ISO 17665 | "Sterilization validations were performed according to ISO 11137 and 17665 and demonstrated substantial equivalence." |
| Packaging & Shelf-life | ASTM D4169 (including ASTM F1886, ASTM F88, and ASTM F1929) | "Packaging and shelf-life validations were performed according to ASTM D4169 including ASTM F1886, ASTM F88 and ASTM F1929 and demonstrated substantial equivalence." |
| Endotoxin Limit | <20 EU/Device (per AAMI ST72) | "The Limulus amebocyte lysate (LAL) test was performed on sterile devices per AAMI ST72 and met the <20EU/Device endotoxin limit." |
| Material/Surface Analysis | Identification of blast media/particles, removal treatments/agents, chemical analysis, SEM photomicrographs (per FDA Guidance) | "For the modified implant surfaces, the following information was submitted per FDA Guidance...: identification of the blast media, composition of the particles, identification of the treatments and agents used to remove the particles, a chemical analysis of the surface and SEM photomicrographs of the surface." |
Regarding AI/ML Device Specifics (Not Applicable to this Document):
The following points are typically relevant for AI/ML device submissions, and the provided document for a physical dental implant system explicitly states "No clinical data was used in support of this submission." Therefore, these points are not applicable.
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
- N/A. The submission is for a physical medical device (dental implant). No test set of clinical data was used. The document explicitly states: "No clinical data was used in support of this submission."
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
- N/A. No clinical test set or ground truth established by experts was used.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
- N/A. No clinical test set requiring adjudication was used.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- N/A. This is a physical device, not an AI/ML system, so an MRMC study is not relevant and was not performed.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- N/A. This is a physical device, not an AI/ML system.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
- N/A. No clinical ground truth was established or used, as no clinical data was involved in this submission.
8. The sample size for the training set
- N/A. This is a physical device, not an AI/ML system requiring a training set.
9. How the ground truth for the training set was established
- N/A. This is a physical device, not an AI/ML system.
Ask a specific question about this device
Page 1 of 1