K Number
K083205
Manufacturer
Date Cleared
2009-02-13

(106 days)

Product Code
Regulation Number
872.3640
Panel
DE
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

Nobel Biocare's NobelActive implants are endosseous implant intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as an artificial tooth, in order to restore patient esthetics and chewing function. Nobel Biocare's NobelActive implants are indicated for single or multiple unit restorations in splinted or nonsplinted applications. Nobel Biocare's NobelActive implants may be placed immediately and put into immediate function provided that initial stability requirements detailed in the manual are satisfied.

Device Description

NobelActive 8.5 mm & 18.0 mm implants are threaded, root-form dental implants intended for use in the upper and/or lower jaw to support prosthetic devices, such as artificial teeth, in order to restore patient esthetics and chewing function to partially or fully edentulous patients.

NobelActive Internal Connection Implants are similar to predicate NobelActive Internal Connection Implants. The NobelActive 8.5 mm and 18.0 mm implants differ from the predicate device in length.

AI/ML Overview

This document describes the NobelActive 8.5 mm & 18.0 mm dental implants and their substantial equivalence to a predicate device. However, this submission does not contain information about acceptance criteria or a study proving that a device meets acceptance criteria in the context of an AI/ML medical device.

The provided text is a 510(k) summary for a dental implant, which is a physical medical device. It focuses on device description, indications for use, and a demonstration of substantial equivalence to an existing predicate device based on differences in length for the new models.

Therefore, I cannot provide the requested information about acceptance criteria, device performance, sample sizes for test/training sets, expert qualifications, adjudication methods, MRMC studies, standalone performance, or ground truth establishment, as these details are not present in the provided documentation for this type of medical device submission.

§ 872.3640 Endosseous dental implant.

(a)
Identification. An endosseous dental implant is a prescription device made of a material such as titanium or titanium alloy that is intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as artificial teeth, in order to restore a patient's chewing function.(b)
Classification. (1) Class II (special controls). The device is classified as class II if it is a root-form endosseous dental implant. The root-form endosseous dental implant is characterized by four geometrically distinct types: Basket, screw, solid cylinder, and hollow cylinder. The guidance document entitled “Class II Special Controls Guidance Document: Root-Form Endosseous Dental Implants and Endosseous Dental Implant Abutments” will serve as the special control. (See § 872.1(e) for the availability of this guidance document.)(2)
Classification. Class II (special controls). The device is classified as class II if it is a blade-form endosseous dental implant. The special controls for this device are:(i) The design characteristics of the device must ensure that the geometry and material composition are consistent with the intended use;
(ii) Mechanical performance (fatigue) testing under simulated physiological conditions to demonstrate maximum load (endurance limit) when the device is subjected to compressive and shear loads;
(iii) Corrosion testing under simulated physiological conditions to demonstrate corrosion potential of each metal or alloy, couple potential for an assembled dissimilar metal implant system, and corrosion rate for an assembled dissimilar metal implant system;
(iv) The device must be demonstrated to be biocompatible;
(v) Sterility testing must demonstrate the sterility of the device;
(vi) Performance testing to evaluate the compatibility of the device in a magnetic resonance (MR) environment;
(vii) Labeling must include a clear description of the technological features, how the device should be used in patients, detailed surgical protocol and restoration procedures, relevant precautions and warnings based on the clinical use of the device, and qualifications and training requirements for device users including technicians and clinicians;
(viii) Patient labeling must contain a description of how the device works, how the device is placed, how the patient needs to care for the implant, possible adverse events and how to report any complications; and
(ix) Documented clinical experience must demonstrate safe and effective use and capture any adverse events observed during clinical use.