Search Filters

Search Results

Found 1 results

510(k) Data Aggregation

    K Number
    K242978
    Device Name
    Geo Abutment
    Manufacturer
    Date Cleared
    2025-06-16

    (263 days)

    Product Code
    Regulation Number
    872.3630
    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Geo Abutments are intended for use to support a prosthetic device in a partially or completely edentulous patient. They are intended to support a single-unit or multi-unit cement-retained prosthesis in the mandible or maxilla. Geo Abutments are compatible with the following implants. All digitally designed custom abutments for use with Geo Abutments are to be sent to a GeoMedi Co. Ltd. validated milling center for manufacture.

    Device Description

    The purpose of this submission is to obtain marketing clearance for Geo Abutment from GeoMedi Co., Ltd. a line of titanium base abutments (identified as Multibase) and machinable blank abutments (identified as CMFit) to interface with compatible dental implants from four (4) manufacturers, and a total of seven (7) implant-abutment connections. The compatible implant body diameters range from 3.0 mm to 8.0 mm. The subject device prosthetic platform diameters range from 4.0 mm to 4.6 mm. All patient-specific abutments prepared from subject device Geo Abutment are to be manufactured at a GeoMedi validated milling center.

    Geo Multibase abutments are two-piece abutments in which the Geo Multibase Abutment comprises the first part of the two-piece abutment and a patient-specific zirconia superstructure comprises the second part; the assembly becoming a final finished medical device after cementation of the superstructure on the subject device abutment. They are provided in straight designs, and two (2) connection types: for single unit prostheses (engaging connection) and for bridge or multi-unit prostheses (non-engaging connection). They are not intended for angulation correction, as the design parameters for the superstructure are restricted to straight abutments only.

    These abutments are made of titanium alloy (Ti-6Al-4V) with a titanium nitride (TiN) coating on the coronal portion of the external surface, not including the implant-abutment interface.

    The Geo Multibase abutment and corresponding zirconia superstructure are provided to the clinician either with the superstructure cemented to the abutment by the dental laboratory or separately, for the clinician to bond together chairside, using the cement required in the labeling (3M ESPE RelyX Unicem bonding cement, cleared in K022476 as RelyX RMGIP).

    All patient-specific custom zirconia superstructure fabrication is by prescription on the order of the clinician.

    The design parameters for zirconia superstructures to be used with Geo Multibase abutments are:

    • Minimum wall thickness – 0.5 mm
    • Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height of the superstructure – 0 mm (Geo Multibase abutments have minimum gingival height of 1.0 mm)
    • Maximum gingival height – 5.0 mm
    • Maximum angle – 0° (straight only)

    All zirconia copings (superstructures) for use with the subject device Geo Multibase abutment will be made at a GeoMedi Co., Ltd. validated milling center under FDA quality system regulations, and the material will conform to ISO 13356, Implants for surgery – Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP).

    Geo CMFit abutments are cylindrical titanium alloy abutments designed to be used for fabrication of a one-piece, all titanium patient-specific abutment by a CAD/CAM process. The portion of the abutment available for milling is either 9.9 mm in diameter by 20 mm in length or 13.9 mm in diameter by 20 mm in length. Geo CMFit abutments are available in engaging and non-engaging connections.

    All patient-specific abutment fabrication is by prescription on the order of the clinician. The design parameters for all CMFit patient-specific abutments are:

    • Minimum wall thickness – 0.65 mm
    • Minimum cementable post height for single-unit restoration – 4.0 mm (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
    • Minimum gingival height – 0.5 mm
    • Maximum gingival height – 5.0 mm
    • Maximum angle – 30°

    Manufacture of the Geo Abutment CMFIT patient-specific abutment is to be performed at an GeoMedi Co., Ltd. validated milling center.

    AI/ML Overview

    The provided text is a 510(k) clearance letter for a dental implant abutment, not an AI/ML medical device where performance characteristics like sensitivity, specificity, or reader studies are typically discussed.

    The document primarily focuses on demonstrating substantial equivalence to predicate devices through:

    • Indications for Use (IFU) comparison: Showing that the intended use of the Geo Abutment is the same as already cleared devices (supporting prosthetic devices in edentulous patients, compatible with various implants).
    • Technological characteristics comparison: Detailing similarities in design, materials (titanium alloy, TiN coating, zirconia for superstructures), manufacturing processes (CAD/CAM, milling center), mechanical properties, and sterilization methods.
    • Non-clinical performance data: This section lists types of tests conducted (e.g., mechanical testing per ISO 14801, shear/tension testing per ASTM F1044/F1147, sterilization validation per ISO 17665-1/2, biocompatibility per ISO 10993-5/12) to ensure the device meets safety and performance standards equivalent to the predicate. However, it does not provide acceptance criteria or specific numerical results from these tests. It only states that these tests were done to "demonstrate that the subject devices... have sufficient strength for the intended use" and "characterize the mechanical properties."

    Therefore, based on the provided document, I cannot fulfill your request for:

    1. A table of acceptance criteria and the reported device performance: This detailed information is typically part of the test reports submitted to the FDA, but not usually summarized in the publicly available 510(k) clearance letter or summary in this level of detail (i.e., the specific pass/fail thresholds and the measured values for each test). The document only states what was tested and the conclusion that it demonstrated "sufficient strength."
    2. Sample sizes used for the test set and the data provenance: This information is not present in the 510(k) summary. These details would be in the specific test protocols and reports.
    3. Number of experts used to establish the ground truth... and their qualifications: This is not applicable as this is a physical device, not an AI/ML diagnostic aid requiring human expert annotation for ground truth.
    4. Adjudication method for the test set: Not applicable for this type of device.
    5. MRMC comparative effectiveness study: Not applicable for a physical dental abutment. This is typically for AI/ML diagnostic devices.
    6. Standalone (algorithm only without human-in-the-loop performance): Not applicable for a physical device.
    7. The type of ground truth used: For a physical device like a dental abutment, "ground truth" relates to material properties, mechanical strength, dimensional accuracy, and biocompatibility, as demonstrated through engineering tests and material characterization, not clinical outcomes or expert consensus in an AI sense. The document refers to ISO and ASTM standards, which define the test methods and what constitutes acceptable performance (the "ground truth" for material and mechanical properties).
    8. The sample size for the training set: Not applicable. This is not an AI/ML device.
    9. How the ground truth for the training set was established: Not applicable.

    In summary, the provided document demonstrates substantial equivalence for a physical dental device through comparison to predicate devices and adherence to established engineering and material standards, rather than through clinical study formats typically seen for AI/ML diagnostic tools.

    To answer your question, if this were an AI/ML device document, the "acceptance criteria" and "reported device performance" would typically be found in sections describing performance metrics like:

    • Sensitivity, Specificity, Accuracy
    • Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)
    • Positive Predictive Value (PPV), Negative Predictive Value (NPV)
    • F-score or Dice coefficient (for segmentation tasks)
    • Comparison to a "clinical standard of care" or "expert performance."

    And the "study that proves the device meets the acceptance criteria" would be a clinical validation study (often a retrospective or prospective reader study or a standalone algorithm performance study) with clearly defined ground truth, reader qualifications, and statistical analysis. None of these elements are present because the device is a physical dental abutment.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1