Search Results
Found 10 results
510(k) Data Aggregation
(99 days)
IPD Dental Implant Abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for single or multiple dental prosthetic restorations.
IPD Dental Implant Abutments is a dental implant abutment system composed of dental abutments, screws, as well as other dental abutment accessories, intended to be placed into dental implants to provide support for dental prosthetic restorations.
Abutments provide basis for single or multiple tooth prosthetic restorations. They are available in a variety of connection types to enable compatibility with commercially available dental implants systems.
IPD Dental Implant Abutments includes the following categories of dental abutment designs:
- Titanium base (Interface) abutments (INC3D);
- Multi-Unit abutments (MUA);
- Overdenture Abutments (PSD);
- Temporary Abutments (PP);
- Healing Abutments (TC).
The system also includes the use of the corresponding screws intended to attach the prosthesis to the dental implant. Specifically:
- Ti Screw (TT): Used during restoration fabrication.
- TiN Screw (TTN): Used in finished restorations, with TiN coating.
- TPA Screw (TPA): Used in finished angulated restorations, with TiN coating.
The metallic components of the subject abutments and screws are made of titanium alloy conforming to ISO 5832-3 "Implant for surgery – Metallic materials – Part 3: Wrought titanium 6-aluminium 4-vanadium alloy".
The purpose of this submission is to expand IPD Dental Implant Abutments offerings with:
• New IPD's compatible dental implant systems,
• New angulations available abutment-category specific.
• New in-house TiN coating.
IPD dental implant abutments and screws are compatible with the following commercially available dental implant systems:
(Table 2. Summary of IPD abutments categories with compatibilized OEM Implant/Abutment Systems with specific reference to maximum angulation specifically included in this submission. provided in original text)
Ti Base (Interface) abutments are attached (screw-retained) to the implant/abutment and cemented to the zirconia superstructure.
The Ti Base is a two-piece abutment composed of the titanium component, as the bottom-half, and the zirconia superstructure, as the top-half. It consists of a pre-manufactured prosthetic component in Titanium alloy per ISO 5832-3, as well as the supporting digital library file for FDA-cleared design software (3Shape Abutment Designer™ Software, cleared under K151455) which enables the design of a patient-specific superstructure by the laboratory/clinician and which will be manufactured in FDA-cleared Zirconia (e.g., DD Bio Z, K142987) according to digital dentistry workflow at the point of care, or at a dental laboratory.
The design and fabrication of the zirconia superstructure for Ti Base (Interface) will be conducted using a digital dentistry workflow requiring the use of the following equipment, software and materials:
Scanner: 3D Scanner D850.
Design Software: 3Shape Abutment Designer Software, K151455.
Zirconia Material: DD Bio Z, K142987.
Milling machine/Brand: Dental Concept System Model: DC1 Milling System.
Cement: Multilink® Automix, K123397.
Ti Base (Interface) abutment design parameters for the zirconia superstructure are defined as follows:
Minimum gingival height: 1.5 mm
Minimum wall thickness: 0.43 mm
Minimum post height for single-unit restorations: 4.75 mm (1)
Maximum gingival height: 6.0 mm
Maximum angulation of the final abutment 30° (2)
The resulting final prosthetic restoration is screwed to the dental implant. All subject abutments are single-use and provided non-sterile. Final restoration (which includes the corresponding screw) is intended to be sterilized at the dental clinic before it is placed in the patient.
The provided FDA 510(k) clearance letter pertains to IPD Dental Implant Abutments, a medical device, not an AI/ML-driven software product. Therefore, the information requested regarding acceptance criteria and study data for an AI/ML device (e.g., sample size for test/training sets, expert ground truthing, MRMC studies, standalone performance) is not applicable to this document.
The document describes the device, its intended use, comparison to predicate devices, and the non-clinical performance testing conducted to demonstrate substantial equivalence. These tests are physical and chemical in nature, not related to the performance of an AI/ML algorithm.
Here's a breakdown of why an AI/ML-focused response is not possible, based on the provided text:
- Device Type: The device is "IPD Dental Implant Abutments," which are physical components used in dentistry (titanium alloy abutments, screws, designed for zirconia superstructures). It is not software, a diagnostic imaging tool, or an AI/ML algorithm.
- Purpose of Submission: The submission aims to expand compatibility with new dental implant systems and include new angulations and in-house TiN coating. This is a modification of a physical medical device, not a new AI/ML development.
- Performance Data (Section VII): This section explicitly lists non-clinical performance testing such as:
- Sterilization validation (ISO 17665-1)
- Biocompatibility testing (Cytotoxicity, Sensitization, Irritation per ISO 10993)
- Reverse engineering and dimensional analysis for compatibility
- Validation of the digital workflow and software system (but this refers to the CAD/CAM software used to design the physical abutments, not an AI/ML diagnostic tool)
- Static and dynamic fatigue testing (ISO 14801)
- Modified Surfaces Information
- MRI safety review
Conclusion:
The provided document describes a 510(k) clearance for a physical dental implant component. It does not contain any information about the acceptance criteria or study design for an AI/ML driven medical device. Therefore, a table of acceptance criteria and reported device performance related to AI/ML, sample sizes for test/training sets, details on expert ground truthing, MRMC studies, or standalone performance of an algorithm cannot be extracted from this text.
Ask a specific question about this device
(271 days)
MIST IC abutments are intended for use to support a prosthetic device in a partially or completely edentulous patient. They are intended to support a single-unit or multi-unit, cement retained prosthesis in the mandible or maxilla. MIST IC abutments are compatible for use with the following implants:
Compatible Implant System | Implant Body Diameter, mm | Implant Platform Name |
---|---|---|
Straumann Bone Level (CrossFit® Morse Taper) | 2.9 | SC |
3.3 | NC | |
4.1, 4.8 | RC | |
Straumann® Tissue Level (CrossFit® Connection) | 3.3, 4.1, 4.8 | RN |
4.8 | WN | |
Straumann BLX (TorcFit™ Internal Hexalobular) | 3.5, 3.75, 4.0, 4.5 | RB |
5.0, 5.5, 6.5 | WB | |
Neodent GM (Morse taper) | 3.5, 3.75, 4.0, 4.3, 5.0, 6.0, 7.0 | Grand Morse (GM) |
All digitally designed custom abutments for use with MIST IC abutments are to be sent to an Imagine Milling Technologies validated milling center for manufacture.
MIST IC from Imagine Milling Technologies, LLC is a line of Ti-base and machinable blank abutments to interface with compatible dental implants from four (4) manufacturers, and a total of eight (8) implant-abutment interface compatibilities. The subject device prosthetic platform diameters range from 3.8 mm to 6.9 mm. All stock subject device components (abutments and abutment screws) are made of titanium alloy conforming to ASTM F136. The subject device MIST IC L-LINK abutments have a TiN coating achieved through a physical vapor deposition (PVD) process that is identical to the process used for TiN coating of Imagine Milling Technologies, LLC devices cleared in K222368. The PVD cathodic arc evaporation process is a high current, low voltage process in which material evaporated from the cathode (Ti) is ionized, transported through the vacuum chamber with reactive gas (N2) and deposited as a non-porous, thin film on the titanium substrate. Each abutment is supplied with the non-sterile abutment screw designed for attachment to the corresponding compatible OEM implant.
All patient-specific abutment fabrication for all MIST IC abutments is by prescription on the order of the clinician. All MIST IC abutments are intended to be milled at an Imagine Milling Technologies, LLC validated milling center under FDA quality system regulations.
MIST IC L-LINK abutments are two-piece abutments to be used as a base when fabricating a CAD-CAM customized restoration where the superstructure produced will compose the second part of the two-piece abutment; the assembly becoming a final finished medical device after cementation on the subject device abutment. They are provided with engaging and non-engaging connections.
The L-LINK abutments and corresponding zirconia superstructure are provided to the clinician either with the superstructure cemented to the abutment by the dental laboratory, or separately for the clinician to bond together chairside using the cement required in the labeling (RelyX RMGIP bonding cement, cleared in K022476).
The design parameters for L-LINK patient-specific abutments are:
- Minimum wall thickness – 0.5 mm
- Minimum cementable post height for single-unit restoration – 4.0 (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
- Minimum gingival height – 0.5 mm
- Maximum gingival height (for all except Straumann BLX L-Link) – 5.0 mm
- Maximum gingival height (for Straumann BLX L-LINK) – 6.0 mm
- Maximum angle – 20°
All zirconia copings (superstructures) for use with the subject device MIST IC L-LINK abutments will conform to ISO 13356.
MIST IC PREFIT abutments are cylindrical abutments designed for patient-specific abutment fabrication by a CAD-CAM process and machined into a one-piece, all titanium abutment. The portion of the abutment available for milling is either 9.9 mm in diameter by 20 mm in length or 13.9 mm in diameter by 20 mm in length. MIST IC PREFIT abutments have an engaging connection.
The design parameters for PREFIT patient-specific abutments are:
- Minimum wall thickness – 0.5 mm
- Minimum cementable post height for single-unit restoration – 4.0 (minimum cementable post height for single-unit restoration is defined as the height above the restorative margin)
- Minimum gingival height – 0.5 mm
- Maximum gingival height (for all except Straumann BLX PREFIT) – 5.0 mm
- Maximum gingival height (for Straumann BLX PREFIT) – 6.0 mm
- Maximum angle – 30°
The provided document is a 510(k) clearance letter for a dental device, specifically dental implant abutments. It details the device's administrative information, predicate devices, indications for use, subject device description, and performance data used to demonstrate substantial equivalence.
However, the document does not contain any information regarding acceptance criteria or a study proving the device meets those criteria in the context of an AI/ML algorithm. The performance data section refers to non-clinical analyses, such as MR compatibility, sterilization validation, biocompatibility, mechanical properties testing, reverse engineering, and static/dynamic compression-bending testing conforming to ISO 14801. These are standard tests for mechanical dental devices, not AI/ML performance evaluation.
Therefore, I cannot provide the requested information for acceptance criteria and a study proving an AI device meets them based on the given text. The device described, "Mist IC," is a physical dental implant abutment, not an artificial intelligence/machine learning (AI/ML) powered medical device.
To directly answer your prompt based on the provided text, the following information is missing or not applicable:
- A table of acceptance criteria and the reported device performance: Not applicable. The document describes mechanical and material performance testing for a physical device, not AI/ML performance metrics like sensitivity, specificity, or AUC against defined acceptance criteria for an AI algorithm.
- Sample sizes used for the test set and the data provenance: Not applicable. There is no AI/ML test set. The document refers to testing of physical components (OEM implants, abutments, screws, subject device constructs).
- Number of experts used to establish the ground truth for the test set and the qualifications of those experts: Not applicable. No AI/ML ground truth establishment.
- Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable.
- If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable. This is not an AI-assisted diagnostic device.
- If a standalone (i.e. algorithm only without human-in-the loop performance) was done: Not applicable.
- The type of ground truth used (expert consensus, pathology, outcomes data, etc.): Not applicable. The "ground truth" for this device's performance would be the physical properties and mechanical integrity verified by engineering standards (e.g., ISO 14801).
- The sample size for the training set: Not applicable. No AI/ML training set mentioned.
- How the ground truth for the training set was established: Not applicable. No AI/ML training set mentioned.
The document focuses solely on the substantial equivalence of the "Mist IC" dental implant abutments to legally marketed predicate devices based on design, materials, manufacturing, and conventional mechanical/material performance testing.
Ask a specific question about this device
(80 days)
DESS Dental Smart Solutions abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for prosthetic restorations.
All digitally designed custom abutments for use with DESS Bases or Pre-milled Blanks are to be sent to a Terrats Medical validated milling center for manufacture, or to be designed and manufactured according to the digital dentistry workflow. The digital dentistry workflow integrates multiple components: scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machine, and associated tooling and accessories.
The purpose of this submission is to expand the DESS Dental Smart Solutions abutment system cleared under K221301 and K240982 to allow additional options of zirconia material, scanners, CAM software, and milling machines to the digital dentistry workflow. The subject devices are to be sent to Terrats Medical validated milling centers for manufacture, or to be designed and manufactured via a digital dentistry workflow. The digital dentistry workflow integrates multiple components: scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, titanium and ceramic material, milling machine, and associated tooling and accessories. There are no changes to the abutment design, implant compatibilities, or design parameters. All part numbers have been cleared for manufacturing via a validated milling center and digital dentistry workflows (also referred to as point of care) under K221301 and K240982.
The subject device DESS Dental Smart Solutions abutments provide a range of prosthetic solutions for dental implant restoration. DESS abutments are offered in a variety of connection types to enable compatibility with currently marketed dental implants. All abutments are provided non-sterile, and each abutment is supplied with the appropriate abutment screw (if applicable) for attachment to the corresponding implant.
Subject device Base Abutments are designed for fabrication of a patient-specific CAD/CAM zirconia superstructure on which a crown may be placed. They are two-piece abutments for which the second part (or top half) is the ceramic superstructure. They also may be used for support of a crown directly on the abutment.
All patient-specific custom abutment fabrication for Base Abutments and Pre-milled (Blank) Abutments is by prescription on the order of the clinician. The subject device Pre-milled (Blank) Abutments and all zirconia superstructures for use with the subject device Ti Base Interface, DESS Aurum Base, ELLIPTIBase, and DESS C-Base will be manufactured using a validated milling center or a digital dentistry workflow. A validated milling center will be under FDA quality system regulations. The digital dentistry workflow scans files from intra-oral and lab (desktop) scanners, CAD software, CAM software, titanium and ceramic material, milling machine and associated tooling and accessories.
The digital dentistry workflow uses scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machine and associated tooling and accessories.
The provided 510(k) summary for DESS Dental Smart Solutions focuses on demonstrating substantial equivalence to predicate devices for dental implant abutments. It primarily addresses the expansion of compatible materials, scanners, CAM software, and milling machines within an existing digital dentistry workflow. The document does not describe an AI/ML-based device that would typically have acceptance criteria related to diagnostic performance.
Therefore, many of the requested items related to AI/ML device performance (like acceptance criteria for diagnostic metrics, sample size for test sets, data provenance, expert qualifications, adjudication methods, MRMC studies, standalone performance, and training set details) are not applicable to this submission.
The acceptance criteria and supporting "study" (non-clinical data) for this device are related to its mechanical performance, biocompatibility, and integration within the digital workflow, demonstrating that the expanded components maintain the safety and effectiveness of the previously cleared predicate devices.
Here's a breakdown based on the information provided and the non-applicability of AI/ML-specific questions:
1. A table of acceptance criteria and the reported device performance
Since this is not an AI/ML diagnostic device, the acceptance criteria are not in terms of traditional diagnostic metrics (sensitivity, specificity, AUC). Instead, they are related to material properties, mechanical integrity, and the digital workflow's accuracy.
Acceptance Criteria Category | Reported Device Performance (Summary from Submission) |
---|---|
Mechanical Integrity / Compatibility | - Fatigue testing of OEM implant bodies with patient-specific abutments made at worst-case angled conditions. (Implies successful completion to similar or better standards than predicate.) |
Biocompatibility | - Biocompatibility testing according to ISO 10993-5 and ISO 10993-12. (Implies successful demonstration of biocompatibility.) |
Sterilization | - Sterilization validation according to ISO 17665-1, ISO 17665-2, and ISO 14937. (Implies successful validation for sterilization.) |
CAD Design Restrictions | - Software verification included testing of restrictions that prevent design of components outside of the stated design parameters. |
- Abutment design library validated to demonstrate established design limitations are locked and cannot be modified by the user. (Implies successful implementation and verification of design constraints.) |
| CAM Restriction Zones / Manufacturing Accuracy | - Validation testing of CAM restriction zones conducted, including verification to show avoidance of damage or modifications of the connection geometry, and locking of restriction zones from user editing in CAM software. (Implies successful validation to ensure manufacturing precision and prevent damage.) |
| Material Conformance | - Zirconia materials conform to ISO 6872. - Titanium alloy conforms to ASTM F136.
- Co-Cr-Mo alloy conforms to ASTM F15337. (Implies materials meet standards.) |
| Physical Dimensions | - Device encompasses the same range of physical dimensions as the predicate device. (Implies dimensional equivalence.) |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
- Sample Size: Not explicitly stated in terms of a "test set" for diagnostic performance. The validation involved physical testing of components (e.g., fatigue testing) and software verification. The specific number of abutments or digital design instances used for these non-clinical tests is not detailed in this summary.
- Data Provenance: Not applicable in the context of patient data for an AI/ML device. The "data" here refers to engineering and material testing results, likely conducted in controlled lab environments (implied to be in accordance with international standards like ISO and ASTM). The manufacturer is Terrats Medical SL, in Spain, so testing would likely originate from their facilities or contracted labs.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
Not applicable. This is not a diagnostic device requiring expert interpretation for ground truth. The "ground truth" for this device relates to engineering specifications and material science.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
Not applicable. This is not a diagnostic device involving expert review adjudication.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
Not applicable. This device is not an AI-assisted diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
Not applicable. This is not an AI/ML algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
For this device, the "ground truth" is based on:
- Engineering Specifications: Defined design parameters (e.g., minimum wall thickness, post height, angulation limits).
- Material Standards: Conformance to international standards such as ASTM F136, ISO 6872.
- Benchmarking/Predicate Equivalence: Performance is assessed against established performance of the predicate devices and OEM implant systems.
- Software Validation Logic: Verification that software correctly enforces design rules and CAD/CAM restrictions.
8. The sample size for the training set
Not applicable. This device does not involve a machine learning training set.
9. How the ground truth for the training set was established
Not applicable. This device does not involve a machine learning training set.
Ask a specific question about this device
(138 days)
DESS Dental Smart Solutions abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for prosthetic restorations.
The purpose of this submission is to expand the DESS Dental Smart Solutions abutment system cleared under K221301 to add the ability for the subject device Base Abutments and Pre-milled (Blank) Abutments to be designed using AbutmentCAD software in the digital dentistry workflow, as well as add angulation to some of the Pre-Milled (Blank) Abutments. The subject devices are to Terrats Medical validated milling centers for manufacture, or to be designed and manufactured via a digital dentistry workflow. The digital dentistry workflow integrates multiple components: scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, titanium and ceramic material, milling machine, and associated tooling and accessories. The proposed change is to allow the subject devices to be designed using AbutmentCAD by exocad GmbH, the current workflow allows only the use of 3Shape by 3Shape A/S for the design software. Another purpose of this submission is to expand the design parameters to allow angulation (up to 30°) on Pre-milled (Blank) Abutments that are compatible with Neodent Grand Morse, Nobel Active/Nobel Parallel Conical 3.0 mm, and Straumann BLX implants. There are no changes to the abutment design or implant compatibilities. All part numbers have been cleared for manufacturing via a validated milling center and digital dentistry workflows in under K221301.
The subject device DESS Dental Solutions abutments provide a range of prosthetic solutions for dental implant restoration. DESS abutments are offered in a variety of connection types to enable compatibility with currently marketed dental implants. All abutments are provided non-sterile, and each abutment is supplied with the appropriate abutment screw (if applicable) for attachment to the corresponding implant.
Subject device Base Abutments are designed for fabrication of a patient-specific CAD/CAM zirconia superstructure on which a crown may be placed. They are two-piece abutments for which the second part (or top half) is the ceramic superstructure. They also may be used for support of a crown directly on the abutment.
All patient-specific custom abutment fabrication for Base Abutments and Pre-milled (Blank) Abutments is by prescription on the order of the clinician. The subject device Pre-milled (Blank) Abutments and all zirconia superstructures for use with the subject device Ti Base Interface, DESS Aurum Base, ELLIPTIBase, and DESS C-Base will be manufactured using a validated milling center or a digital dentistry workflow. A validated milling center will be under FDA quality system regulations. The digital dentistry workflow scans files from intra-oral and lab (desktop) scanners, CAD software, titanium and ceramic material, milling machine and associated tooling and accessories.
The digital dentistry workflow uses scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machine and associated tooling and accessories. The digital workflow includes the following products (not subject devices of this submission):
- Ceramic material: VITA YZ ST and VITA YZ XT (K180703)
- . Cement: Ivoclar Vivadent Multilink Hybrid Abutment Cement (K130436)
- . Intraoral Scanner: 3Shape TRIOS A/S Series Intraoral Scanner (510(k) exempt under 21 CFR 872.3661)
- Desktop scanner: 3Shape D900 Dental Lab Scanner (510(k) exempt under 21 CFR 872.3661)
- Abutment design software: 3Shape Abutment Designer Software (K151455) and AbutmentCAD ● (K193352)
- . Milling machine: VHF R5 by vhf camfacture AG with DentalCAM and DentalCNC 7 software
The provided text describes a 510(k) premarket notification for DESS Dental Smart Solutions, which are dental implant abutments. This type of submission focuses on demonstrating substantial equivalence to a legally marketed predicate device, rather than proving a device's effectiveness through clinical performance studies with specific statistical acceptance criteria for accuracy, sensitivity, or specificity.
Therefore, the document does not contain the information requested regarding:
- A table of acceptance criteria and reported device performance (in terms of clinical metrics like accuracy, sensitivity, specificity).
- Sample size used for the test set or its provenance.
- Number of experts used to establish ground truth or their qualifications.
- Adjudication method for the test set.
- Multi-Reader Multi-Case (MRMC) comparative effectiveness study or its effect size.
- Standalone (algorithm only) performance.
- Type of ground truth used (expert consensus, pathology, outcomes data).
- Sample size for the training set.
- How the ground truth for the training set was established.
The study described in this document focuses on non-clinical performance data to demonstrate substantial equivalence, specifically:
- Sterilization validation: According to ISO 17665-1, ISO 17665-2, and ISO 14937.
- Biocompatibility testing: According to ISO 10993-5 and ISO 10993-12.
- Fatigue testing and reverse engineering analysis: Of OEM implant bodies, OEM abutments, and OEM abutment screws to confirm compatibility. This includes fatigue testing of OEM implant bodies with patient-specific abutments made at worst-case angled conditions.
- MR Conditional labeling.
- Validation testing of CAM restriction zones: Including verification to show avoidance of damage or modifications of the connection geometry, and locking of restriction zones from user editing in the CAM software.
- Software verification: Included testing of restrictions that prevent design of components outside of the stated design parameters. The abutment design library was validated to demonstrate that established design limitations and specifications are locked and cannot be modified by the user.
The acceptance criteria and reported "performance" for this submission are based on these engineering and design validations, ensuring the device meets safety and performance standards equivalent to the predicate device, K221301. The key "performance" metrics are about maintaining physical and material integrity and compatibility.
The core of the submission is to expand the DESS Dental Smart Solutions abutment system to:
- Allow design using AbutmentCAD software (in addition to 3Shape software).
- Add angulation (up to 30°) to some Pre-milled (Blank) Abutments for specific implant systems.
The document explicitly states: "No clinical data were included in this submission." and "The subject device, the predicate device, and reference devices have the same intended use, technological characteristics, and are materials. The subject device, the predicate device, and reference devices encompass the same range of physical dimensions, manufactured by similar methods, are packaged in similar materials, and are to be sterilized using similar methods. The data included in this submission demonstrate substantial equivalence to the predicate devices listed above."
Therefore, this FDA submission is for a physical medical device (dental implant abutment) and its manufacturing/design software modifications, not an AI or diagnostic device that would involve clinical performance metrics like sensitivity or specificity.
Ask a specific question about this device
(493 days)
Indications for use Bilimplant® dental implants are indicated for the functional and esthetic oral rehabilitation of the upper or lower jaw of edentulous or partially edentulous patients. They can be used for immediate, early or late implantation following the extraction or loss of natural teeth. The implants can be placed with immediate function for single-tooth and/or multiple tooth applications when good primary stability is achieved and with appropriate occlusal loading to restore chewing function.
Bilimplant Abutments and Prosthetic parts are intended for use with Implants in the maxillary and / or mandibular arches to provide support for crowns or bridges for edentulous or partially edentulous patients.
The Bilimplant® dental implants and abutments, which are models within the Proimtech Implant and Abutment system, are intended for oral implantation to provide a support structure for connected prosthetic devices.
Bone Level Implant: Thanks to its design features, it is placed completely at the bone level. It is produced to be applied in different bone types and different regions (anterior and posterior) in the lower and upper jaw. Since it is at the bone level, it can be used for more aesthetic results, especially in the front areas of the jaws (in the areas on the smile line).
Tissue Level Implant: The Tissue Level Implant has a 2.3 mm machined collar. It can be used in posterior applications in the upper and lower jaw where there are no aesthetic concerns, in different bone types and especially in cases with high gingival amount in order to facilitate prosthetic stages.
Straight Abutments: It is the superstructure part that supports fixed partial dentures manufacture on a straight implant. It is used in single member or bridge cemented restorations. Cement retained abutments have a different gingival height of 1-5 mm, diameters of 3.5, 4.5, 6 mm depending on the platform diameters.
Healing Caps: Following the second surgery of the gingiva in two-stage surgical procedures, and after the placement of the implant in single-stage surgeries, it is screwed into the implant body and protects the internal structure of the implant. It is not used to support a prosthetic superstructure. It is used for transgingival healing and shaping of soft tissue during the healing process of soft tissue. There are two different designs for healing caps in dental implant systems. These are manufactured to be compatible with tissue level and bone level implants.
Abutment Screws: Connects and fixes the abutment and implant body.
This is a 510(k) premarket notification for a medical device family consisting of Proimtech Dental Body Implants, Abutments, Healing Caps, and Abutment Screws. The provided document is an FDA clearance letter and a 510(k) Summary, which details the device's characteristics and its substantial equivalence to previously cleared devices.
The document does not describe a study proving the device meets specific acceptance criteria in terms of performance metrics like accuracy, sensitivity, or specificity, as it is a medical device clearance for physical devices, not a diagnostic or AI-powered device.
Therefore, I cannot provide information on acceptance criteria and a study proving the device meets them in the context of diagnostic performance. The studies mentioned are related to material properties, sterilization, biocompatibility, and packaging, which are standard for dental implants.
However, I can extract the information provided regarding the testing and characterization of the device components, which serve as evidence for their safety and effectiveness in achieving substantial equivalence.
1. A table of acceptance criteria and the reported device performance
Since this is a physical medical device (dental implants and associated components) and not an AI/diagnostic device, the concept of "acceptance criteria" and "reported device performance" typically refers to engineering performance (e.g., strength, durability, biocompatibility) rather than diagnostic metrics. The document describes several tests conducted to ensure the device's fundamental characteristics are met:
Acceptance Criteria (Implied from tests) | Reported Device Performance (Summary) |
---|---|
Sterilization: | |
Valid Gamma Sterilization | Achieved according to ISO 11137-1 and ISO 11137-2 for device implants and screws. |
Moist Heat Sterilization (End User) | Validated in accordance with ISO 17665-1 and ISO TS 17665-2 (to be performed by the end user for non-sterile components like abutments and healing caps). |
Biocompatibility: | |
Cytotoxicity | Tested in accordance with ISO 10993-5 (Biocompatibility Testing). |
Sensitization/Irritation | Tested in accordance with ISO 10993-12 (Biocompatibility Testing). |
Bacterial Endotoxin: | |
Endotoxin Level (BET) | ≤ 20 EU/device (Monitored for devices provided sterile). Testing performed according to USP-43- NF38; 2020 and LAL testing according to ASTM F1980. |
Packaging & Shelf Life: | |
Packaging Integrity | Shelf life validation through packaging with ISO 1160. |
Material & Surface Characteristics (Implants): | |
Material Composition | Grade 4 commercially pure titanium conforming with ISO 5832-2 (for implants). Ti-6Al-4V ELI (ASTM F136) for healing caps and abutment screws. Assessed for substantial equivalence. |
Surface Treatment (SLA) | Validated using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for the grit-blasted with non-resorbable aluminum oxide (AI20) particles surface. (Implants) |
Design Consistency | Comparisons of design features, diameters, and lengths with predicate devices were made. Differences were deemed not to affect substantial equivalence or product performance, "as a result of the tests conducted." (Specific performance tests for design features are not detailed, but implied by the conclusion of no significant difference). |
2. Sample size used for the test set and the data provenance
The document does not specify sample sizes for these tests (e.g., how many implants were tested for sterilization or biocompatibility). This level of detail is typically found in the full test reports, not the 510(k) summary.
- Data provenance: The testing was conducted as part of the regulatory submission process for a manufacturer in Turkey (Proimtech Saglik Urunleri Anonim Sirketi, Istanbul, Turkey). The studies are non-clinical (laboratory-based) as explicitly stated: "No clinical data were included in this submission." The testing would be considered prospective in the sense that it was performed specifically for this submission.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
This question is not applicable to the type of device and studies described. "Ground truth" and "experts" in this context typically refer to diagnostic interpretation in AI or clinical studies. For physical device testing (material, sterilization, biocompatibility), the "ground truth" is established by adherence to international standards (e.g., ISO, ASTM, USP) and the results are interpreted by qualified laboratory personnel, not by a panel of medical experts establishing a "ground truth" for a diagnosis.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This is not applicable for non-clinical, laboratory-based testing of physical medical device properties. Adjudication methods are typically used in clinical trials or diagnostic performance studies to resolve discrepancies in expert opinions or outcomes.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
This is not applicable. MRMC studies are used to evaluate the interpretive performance of readers (e.g., radiologists) with and without assistance from an AI device for diagnostic tasks. The Proimtech Dental Body Implant system is a physical dental implant and prosthetic components, not a diagnostic AI system.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
This is not applicable. The device is a physical medical implant, not an algorithm or AI.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
As explained in point 3, the concept of "ground truth" in the context of diagnostic devices is not applicable here. For the non-clinical tests conducted, the "ground truth" is defined by the objective measurement criteria and specifications outlined in the referenced international standards (e.g., ISO 11137 for sterilization, ISO 10993 for biocompatibility) and scientific analytical methods (e.g., SEM/EDS for surface characterization). Compliance with these standards is the "ground truth" for the device's physical and biological properties.
8. The sample size for the training set
This is not applicable. This device is a physical medical implant, not an AI or machine learning model that requires a training set.
9. How the ground truth for the training set was established
This is not applicable, as there is no training set for a machine learning model.
Ask a specific question about this device
(98 days)
DESS Dental Smart Solutions abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for prosthetic restorations.
The purpose of this submission is to expand the DESS Dental Smart Solutions abutment system by a change in sterilization status to provide products sterile to the end user that were previously cleared to be provided non-sterile. The subject device abutments and abutment screws were cleared previously to be provided non-sterile to the end user in K170588, K191986, K212628, and K22288. All subject device components will now be provided sterile.
The subject device components include Healing Abutments, Multi-Unit Abutments (0, 17°, and 30°), and abutment screws.
The provided text is a 510(k) summary for the DESS Dental Smart Solutions, an endosseous dental implant abutment. It details the device, its intended use, and its substantial equivalence to previously cleared predicate and reference devices. However, this document does not contain the acceptance criteria or a study proving the device meets those criteria in the context of an AI/ML medical device.
The 510(k) submission for this dental abutment focuses on establishing substantial equivalence based on:
- Design and Material: The subject device components are identical in design, material (Ti-6Al-4V alloy, DLC coating), and technological characteristics to previously cleared devices.
- Manufacturing: The manufacturing process is consistent with previously cleared devices.
- Biocompatibility: Referenced from previous K-clearances.
- Sterilization: The main change in this submission is expanding the system to provide products sterile to the end-user via gamma irradiation, which was validated by referencing a previous K-clearance (K212538).
- MR Environment Testing: Non-clinical analysis was performed to evaluate the subject devices in the MR environment, referencing published literature and FDA guidance.
- Shelf Life Testing: Referenced from a previous K-clearance (K212538) for samples after accelerated aging.
Therefore, I cannot fulfill your request to describe the acceptance criteria and a study proving an AI/ML device meets them based on the provided text, as this document is not about an AI/ML medical device. It's about dental implant abutments and establishes substantial equivalence through non-clinical performance data and comparison to predicate devices, not through AI/ML performance metrics.
To provide the information you requested, I would need a document detailing the validation of an AI/ML medical device, which would include definitions of acceptance criteria (e.g., accuracy, sensitivity, specificity), details of training and test datasets, ground truth establishment, and potentially clinical effectiveness studies if applicable.
Ask a specific question about this device
(231 days)
Straumann® BLX Implants are suitable for endosteal implantation in the upper and lower jaw and for the functional and esthetic oral rehabilitation of edentulous and partially edentulous patients. BLX Implants can be placed with immediate function on singletooth, bar and bridge applications when good primary stability is achieved and with appropriate occlusal loading to restore chewing function. The prosthetic restorations are connected to the implants by the corresponding abutment components.
The Straumann BLX Ø3.5 mm Implants are fully tapered implants manufactured utilizing the Roxolid material and are finished with SLActive® surface. The BLX connection is identified as conical fitting with Torx style engaging feature (TorcFit connection). There are two available prosthetic platforms identified for BLX Implants: RB (Regular Base) and WB (Wide Base). The subject devices have a RB platform with a TorcFit internal connection, which is identical for all the implant lengths. They are provided sterile by gamma radiation and are available in the following sizes:
Platform: RB, Maximium outer Ø (mm): 3.5, Length (mm): 8, 10, 12, 14, 16, 18
The provided text describes the Straumann BLX Ø3.5 mm Implants, a medical device for endosseous dental implantation. The information required to describe acceptance criteria and associated studies is extracted below.
1. Table of acceptance criteria and reported device performance:
The document primarily focuses on demonstrating substantial equivalence to predicate devices rather than setting explicit quantifiable acceptance criteria as a standalone device. However, the performance testing section details the types of tests conducted and implicitly states that the results demonstrated equivalence.
Acceptance Criteria (Implied) | Reported Device Performance |
---|---|
Sterilization: Sterility Assurance Level (SAL) of 10^-6 | Achieved a SAL of 10^-6, validated according to ISO 11137-1:2006 (development, validation, and routine control of sterilization process) and ISO 11137-2:2013 (establishing sterilization dose) using the over kill bioburden method. |
Pyrogenicity: Meets pyrogen limit specifications | Met pyrogen limit specifications, with a testing limit of 20 EU/device, determined by LAL Endotoxin Analysis. |
Shelf Life: | 5 years, due to packaging equivalent to predicate devices and materials not adversely affected by time. |
Biocompatibility: Compliant with ISO 10993-1 and FDA Guidance | Biological assessment performed according to ISO 10993-1:2009 and FDA Guidance Document "Use of International Standard ISO 10993-1". No new testing performed as subject devices have equivalent nature of body contact, contact duration, material formulation, and sterilization methods compared to predicate devices. (This implies that the established biocompatibility of the predicate is assumed to apply). |
Dynamic Fatigue: Equivalent to predicate devices | Dynamic fatigue tests were conducted in 0.9% NaCl at 37°C and "demonstrated the Straumann BLX Implant System is equivalent to the predicate devices." (No specific numerical acceptance criteria or performance metrics are provided for the subject device or predicate, only a qualitative statement of equivalence.) |
Static Strength: Equivalent to predicate devices | Static strength tests were conducted alongside dynamic fatigue tests and "demonstrated the Straumann BLX Implant System is equivalent to the predicate devices." (No specific numerical acceptance criteria or performance metrics are provided for the subject device or predicate, only a qualitative statement of equivalence.) |
Insertion Torque: Allows reaching suitable implant insertion torques. | Insertion torque tests were conducted on the "worst cases" for BLX Ø3.5 mm implants and "demonstrated that the BLX Implants and the related cutting instruments allow reaching suitable implant insertion torques." (No specific numerical acceptance criteria or performance metrics are provided, only a qualitative statement of suitability.) |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective):
- Sterilization Validation: The validation method used was the over kill bioburden method. While details on the number of samples for bioburden testing are not specified, it would typically involve a statistically significant number of samples to establish the bioburden and then validate the sterilization process. Data provenance is not specified.
- Pyrogenicity: The number of devices tested for LAL Endotoxin Analysis is not specified. Data provenance is not specified.
- Bench Testing (Dynamic Fatigue, Static Strength, Insertion Torque): The sample sizes for these tests are not explicitly stated in the document. Data provenance is not specified.
- Clinical Data: No device-specific clinical data has been submitted.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience):
Not applicable. This submission relies on substantial equivalence and bench testing, not clinical studies requiring expert ground truth for a test set.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:
Not applicable, as no clinical test set requiring adjudication by experts was used.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
Not applicable. This device is a dental implant, not an AI-assisted diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
Not applicable. This device is a dental implant, not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
Not applicable. The equivalence is based on physical and biological testing against established standards and predicates, not clinical ground truth derived from patients.
8. The sample size for the training set:
Not applicable. This device is a physical product, not a software algorithm requiring a training set.
9. How the ground truth for the training set was established:
Not applicable as there is no training set for this device.
Ask a specific question about this device
(175 days)
DESS Dental Smart Solutions abutments are intended to be used in conjunction with endosseous dental implants in the maxillary or mandibular arch to provide support for prosthetic restorations.
All digitally designed custom abutments for use with Aurum™ Abutment or Pre-milled Blank are to be sent to a Terrats Medical validated milling center for manufacture.
DESS Dental Smart Solutions subject devices include four abutment design types (Aurum Base, Pre-milled Blank, CoCr Pre-milled Blank, CoCr Abutment) and one screw type (Aurum Base Screw). Abutments are provided in ten abutment connections compatible with eleven implant platform diameters range from 3.3 mm to 6.5 mm. Corresponding implant body diameters range from 3.25 mm to 6.0 mm. All abutments are provided non-sterile.
The document describes the DESS Dental Smart Solutions, which are dental implant abutments. The submission aims to demonstrate substantial equivalence to previously cleared predicate devices.
Here's an analysis of the provided information regarding acceptance criteria and studies:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not explicitly state quantitative acceptance criteria in a typical tabular format with specific numerical targets. Instead, it relies on demonstrating equivalence to predicate devices through various performance tests and comparisons. The "acceptance criteria" are implied by the successful completion of these tests and the determination that the device is "substantially equivalent" to already marketed devices.
However, some design parameters are mentioned as remaining the same or being comparable to the predicate devices, which can be seen as implicit performance criteria:
Feature / Performance Metric | Acceptance Criteria (Implied by Equivalence to Predicate) | Reported Device Performance |
---|---|---|
Sterilization | SAL of 10^-6 according to ISO 17665-1 and ISO 17665-2 | "Sterilization to an SAL of 10^-6 according to ISO 17665-1 and ISO 17665-2 to ensure sterilization of the final finished device" (Successful) |
Biocompatibility | Non-cytotoxic according to ISO 10993-1 and ISO 10993-5 | "Biological evaluation according to ISO 10993-1 and cytotoxicity testing to ISO 10993-5 to demonstrate that all devices are non-cytotoxic" (Successful) |
Minimum Wall Thickness | Aurum Abutment: 0.4 mm | |
Pre-milled Blank: 0.45 mm | ||
CoCr Abutment: 0.4 mm (Same as primary predicate K170588) | Aurum Abutment: 0.4 mm | |
Pre-milled Blank: 0.45 mm | ||
CoCr Abutment: 0.4 mm (Stated to remain the same as primary predicate K170588, implying conformity to existing successful designs) | ||
Minimum Post Height (single-unit) | Aurum Abutment: 4.0 mm | |
Pre-milled Blank: 4.0 mm | ||
CoCr Abutment: 4.0 mm (Increased from previous version, but deemed substantially equivalent to K092341 at 4mm) | Aurum Abutment: 4.0 mm (Stated as the new minimum for single-unit restorations, deemed substantially equivalent to K092341's titanium post height which also requires additional castable component to create 4mm) | |
Pre-milled Blank: 4.0 mm | ||
CoCr Abutment: 4.0 mm (Stated to remain the same as primary predicate K170588) | ||
Maximum Gingival Height | Aurum Abutment: 6.0 mm | |
Pre-milled Blank: 6.0 mm | ||
CoCr Abutment: 6.0 mm (Same as primary predicate K170588) | Aurum Abutment: 6.0 mm | |
Pre-milled Blank: 6.0 mm | ||
CoCr Abutment: 6.0 mm (Stated to remain the same as primary predicate K170588) | ||
Maximum Total Abutment Height | Pre-milled Blank: 19 mm | Pre-milled Blank: 19 mm |
Angulation Correction | No angulation correction (Same as primary predicate K170588) | All abutments are for straight abutments only (implies no angulation correction, same as primary predicate K170588) |
Chemical Composition | Materials used are comparable to predicate devices (Titanium Alloy, CoCr, Zirconia) | Aurum Base (Titanium Alloy ASTM F136), CoCr Pre-milled Blank (CoCr ASTM 1537), Ti Pre-milled Blank (Titanium Alloy ASTM E136), CoCr Abutment (CoCr ASTM 1537). Screws are Titanium Alloy. (Found to be substantially equivalent to predicates) |
Physical Dimensions | Encompasses the same range of physical dimensions including diameter and design of abutments as predicate devices. | "The subject device and predicate devices encompass the same range of physical dimensions, including diameter and design of the abutments." (Stated as a conclusion of equivalence) |
Packaging/Sterilization Methods | Similar to predicate devices. | "The subject and predicate devices are packaged in similar materials and are to be sterilized using similar methods." (Stated as a conclusion of equivalence) |
2. Sample Size Used for the Test Set and the Data Provenance
The document states: "Non-clinical testing data submitted to demonstrate substantial equivalence included: sterilization... biological evaluation... and compatibility analysis by reference to K170588."
- The report does not specify sample sizes for the sterilization or biocompatibility tests.
- The data provenance is implied to be from the manufacturer's (Terrats Medical SL) internal testing as part of their submission for regulatory clearance. It's not explicitly stated whether the data is retrospective or prospective, or the country of origin of the raw data, beyond the manufacturer being from Spain. The "compatibility analysis by reference" means using existing data/information from the predicate device (K170588).
3. Number of Experts Used to Establish the Ground Truth for the Test Set and the Qualifications of Those Experts
This type of information – number and qualifications of experts for ground truth – is typically relevant for studies involving subjective assessments, like image interpretation in AI/ML medical devices. This document is for a physical dental implant abutment, and the tests performed are objective, non-clinical tests (sterilization, biocompatibility, mechanical properties based on design parameters). Therefore, this information is not applicable and not provided in the submission.
4. Adjudication Method for the Test Set
As the tests are objective non-clinical tests, an adjudication method for a "test set" (in the context of expert review) is not applicable and not mentioned. The results of the non-clinical tests would either meet or not meet the specified standards (e.g., SAL, non-cytotoxicity).
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
No MRMC comparative effectiveness study was done. This type of study is specifically relevant for AI/ML-driven diagnostic or interpretative devices involving human readers. The device described here is a physical dental implant abutment, not an AI/ML diagnostic tool.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done
No standalone algorithm performance study was done. This is not an AI/ML device. The "CAD/CAM process" mentioned refers to computer-aided design and manufacturing for custom abutments, which is a manufacturing process, not an analytical algorithm for diagnosis or interpretation.
7. The Type of Ground Truth Used
For the non-clinical tests conducted:
- Sterilization: The ground truth is the scientific standard for sterility, defined as a Sterility Assurance Level (SAL) of $10^{-6}$ based on ISO 17665-1 and ISO 17665-2.
- Biocompatibility: The ground truth is the absence of cytotoxicity, determined by adherence to ISO 10993-1 and ISO 10993-5.
- Design Parameters/Mechanical Equivalence: The "ground truth" for design parameters (e.g., wall thickness, post height) is derived from engineering specifications and comparison to the proven safety and effectiveness of the legally marketed predicate devices (K170588 and other reference devices). The ultimate ground truth effectively is that the device performs equivalently to previously approved devices.
8. The Sample Size for the Training Set
Not applicable. This device is a physical medical device, not an AI/ML algorithm that requires a "training set" of data.
9. How the Ground Truth for the Training Set Was Established
Not applicable. As this is not an AI/ML device, there is no training set or associated ground truth establishment process in that context.
Ask a specific question about this device
(247 days)
The LOCATOR® F-Tx Attachment System is designed to support fixed, partial or full arch restorations on endosseous dental implants in the mandible or maxilla for the purpose of restory function. It is used in fixed hybrid restorations that can be attached with a snap-in system.
The LOCATOR® F-Tx Attachment System is compatible with the following implants: Implant Manufacturer Connection Type / Platform
Astra Tech | OsseoSpeed Plus EV: 3.6, 4.2, 4.8 mm |
---|---|
BioHorizons | Internal Hex: 3.0, 3.5, 4.5, 5.7 mm |
Biomet 3i | Osseotite ® Certain ® : 3.4, 4.1, 5.0, 6.0 mm |
Camlog | Camlog, Conelog: 3.3, 3.8, 4.3, 5.0 mm |
iSy: 3.8, 4.4, 5.0 mm | |
Dentsply | Ankylos ® : 3.5, 4.5, 5.5, 7.0 mm |
MIS Implants | Internal Hex: 3.75, 4.5 mm |
Nobel Biocare | NobelActive ™ : 3.0, 3.5, 3.9 mm |
Replace ™ Select: 3.5, 4.3, 5.0, 6.0 mm | |
Brånemark: 3.5, 4.1, 5.1 mm | |
Straumann | Bone Level: 3.3, 4.1, 4.8 mm |
Standard: 4.8, 6.5 mm | |
Zimmer | Tapered Screw-Vent ® : 3.5, 4.5, 5.7 mm |
The LOCATOR® F-Tx Attachment System is for rigid connection of fixed, partial and full arch restorations on endosseous dental implants using a snap-in or screw-retained attachment system. The system includes abutments and healing caps. LOCATOR F-Tx abutments are compatible with the implant systems, connection types, and platform sizes listed above, and are provided in various gingival cuff heights ranging from 1 to 6 mm. LOCATOR F-Tx System abutments are made of titanium alloy conforming to ASTM F136 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). LOCATOR F-Tx abutments may be provided with an optional coating of either TiCN (titanium carbon nitride) or TiN (titanium nitride). LOCATOR F-Tx System Healing Caps are made of PEEK.
The provided text describes a 510(k) premarket notification for a medical device, the LOCATOR® F-Tx Attachment System. It focuses on demonstrating substantial equivalence to pre-existing predicate devices, rather than presenting a study design with specific acceptance criteria and detailed performance data often seen for novel AI/ML devices. As such, many of the requested points regarding acceptance criteria, study types (MRMC, standalone), sample sizes for test/training sets, expert qualifications, and ground truth establishment are not applicable or cannot be extracted from this document, as it is not a performance study report for an AI/ML device.
This document outlines the device's intended use, design, materials, and provides a comparison to legally marketed predicate devices to establish substantial equivalence. The "Performance Data" section primarily details the non-clinical testing performed to meet various ISO standards related to sterilization, biocompatibility, and mechanical testing, which are typical for dental implant components.
Here's an attempt to address the request based only on the available information, noting where information is absent:
Acceptance Criteria and Device Performance for LOCATOR® F-Tx Attachment System
Based on the provided 510(k) summary, the "acceptance criteria" are primarily demonstrated through substantial equivalence to predicate devices and adherence to relevant non-clinical performance standards. The performance data presented focuses on material properties, sterilization, biocompatibility, and mechanical retention, rather than performance metrics for an AI/ML system.
1. Table of Acceptance Criteria and Reported Device Performance
Acceptance Criterion (Implicit) | Reported Device Performance |
---|---|
Substantial Equivalence: | |
- Similar Indications for Use | -"The LOCATOR® F-Tx Attachment System is designed to support fixed, partial or full arch restorations on endosseous dental implants in the mandible or maxilla for the purpose of restoring masticatory function. It is used in fixed hybrid restorations that can be attached with a snap-in system." |
- "Substantial equivalence in indications and design principles to legally marketed predicate devices." Comparing language: "The subject device and primary predicate have slightly different Indications for Use language. However, the difference in language does not change the intended use of abutments." |
| - Similar Design Principles | - "LOCATOR F-Tx and Locator (K072878) are each provided with varving cuff heights. The abutment/implant interfaces of all LOCATOR F-Tx abutments are identical to those of the corresponding Locator (K072878) abutments." |
| - Similar Materials | - Abutment: Ti-6Al-4V ELI (same as predicate). - Abutment Coating: TiN (same as predicate), TiCN (same as reference predicate K150295).
- Prosthetic Retention Component: PEEK (predicate uses Nylon). This difference is noted but deemed acceptable. |
| Material Biocompatibility (ISO 10993-1, -5, -12) | - "Characterization and biocompatibility testing of the TiCN coating," - "Biocompatibility testing of the PEEK Healing Caps."
- (Specific results not detailed, but testing was performed and deemed acceptable for submission). |
| Sterilization (ISO 17665-1, -2) | - "Sterilization testing." - (Specific results not detailed, but testing was performed and deemed acceptable for submission). |
| Mechanical Performance (Specifically Retention Strength) | - "The mechanical testing demonstrated the retention strength of the LOCATOR F-Tx Attachment System when using the High Retention Balls was statistically greater than the tensile force created when masticating worst case sticky food (p
Ask a specific question about this device
(267 days)
Medentika TiBase CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
Medentika PreFace CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
The subject device includes two CAD/CAM abutment designs, the Medentika TiBase and the Medentika PreFace. The TiBase is a two-piece abutment used as a base when fabricating a zirconia superstructure and the PreFace is an abutment used in fabricating a full patient-specific abutment in titanium alloy. Both abutment designs are provided non-sterile and are intended to be sterilized by the clinician. Medentika Preface Abutment is available in diameters 3.0 mm to 7.0 mm. Medentika TiBase Abutment is available in diameters 3.25 mm to 7.0 mm. The specific diameters for each Series coordinate with the compatible implant systems and sizes listed below.
TiBase is available in two post designs. TiBase Generation 1 has a conically shaped post that is 4.0 mm high and TiBase Generation 2 has a parallel walled post shape that is 5.5 mm high. PreFace is available in one cylinder height of 20 mm. The maximum angle for abutments fabricated using TiBase or PreFace is 30°, the maximum gingival height is 6 mm and the minimum post height is 4 mm.
Medentika CAD/CAM Abutments are compatible with eleven dental implant systems. Each Medentika abutment series has a precision implant/abutment interface corresponding to the implant system predicate for that series.
The provided document is a 510(k) premarket notification for Medentika CAD/CAM Abutments, asserting substantial equivalence to legally marketed predicate devices. It does not describe a study involving an AI/ML powered device, nor does it detail acceptance criteria related to such a device's performance. Instead, it focuses on non-clinical testing to demonstrate safety and effectiveness for a dental abutment. Therefore, I cannot extract the requested information regarding acceptance criteria, study design for AI/ML performance, ground truth establishment, or human-in-the-loop studies from this document.
The "Performance Data" section (Page 6/7) explicitly states the types of non-clinical testing conducted:
- Engineering analysis and dimensional analysis: To determine compatibility with original manufacturers' components.
- Static and dynamic compression-bending testing: According to ISO 14801 (Dentistry – Implants – Dynamic fatigue test for endosseous dental implants).
- Sterilization testing: According to ISO 17665-1 and ISO 17665-2 to demonstrate an SAL of 10^-6.
- Biocompatibility testing: For cytotoxicity according to ISO 10993-5.
The acceptance criteria would be the successful completion of these tests in accordance with the specified ISO standards and demonstrating compatibility and performance comparable to the predicate devices. However, the document does not list the quantitative acceptance criteria or the specific numerical results obtained for each test (e.g., specific fatigue life, or precise dimensional tolerances met).
In summary, the document does not contain the information required to answer the prompt as it pertains to AI/ML device performance. The device is a physical medical device (dental abutments), and the review is for substantial equivalence based on physical and mechanical properties, not an AI/ML algorithm.
Ask a specific question about this device
Page 1 of 1