Search Filters

Search Results

Found 3 results

510(k) Data Aggregation

    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, and Titanium base ASC Flex are intended for use with dental implants as a support for single or multiple tooth protheses in the maxilla or mandible of a partially or fully edentulous patient. Abutment-level prosthetic components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are intended for use as a support for multi-unit screw-retained bridges and bars in the maxilla or mandible of a partially or fully edentulous patient.

    All digitally designed abutments for use with PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, Titanium base ASC Flex, Multi-unit Titanium Base, Multi-unit Titanium Cap, and MedentiBASE Titanium Base are intended to be sent to an FDA-registered Medentika validated milling center for manufacture or to be manufactured according to the digital dentistry workflow, which integrates multiple components: Scans from desktop and intra oral scanners, CAD and CAM software and milling machine with associated accessories.

    Medentika abutments for the Nobel Biocare Nobel Active® 3.0 mm, Dentsply Sirona Astra Tech OsseoSpeed EV® 3.0 mm and TX® 3.0 mm, Straumann Bone Level 2.9 implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.

    Device Description

    The subject devices are Medentika CAD/CAM Abutments, which primarily expand the options for fabricating patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow". This workflow uses scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machines, and associated tooling and accessories. The devices include Titanium Base abutments, Titanium base ASC Flex abutments, and PreFace and TI-Form (blanks) abutments.

    The abutments are made of titanium alloy (Ti-6Al-4V ELI). Titanium base abutments also include a zirconia superstructure. The specified zirconia materials for milling superstructures are Ivoclar Vivadent IPS e.max ZirCAD Prime, Ivoclar Vivadent IPS e.max ZirCAD Prime Esthetic, Amann Girrbach Zolid Bion, Amann Girrbach Zolid Gen-X, and Institut Straumann AG n!ce Zirkonia HT. The specified cement for bonding superstructures is Multilink Hybrid Abutment Cement from Ivoclar Vivadent AG.

    Key design parameters for CAD/CAM zirconia superstructures (on Titanium base and Titanium base ASC Flex) include: minimum wall thickness of 0.5 mm, minimum cementable post height of 4.0 mm for single unit restorations, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of the final abutment of 30°.

    PreFace and TI-Forms abutments (blanks) are used by dental laboratories to fabricate customized abutments from titanium alloy. Their design parameters include: minimum wall thickness of 0.4 mm, minimum cementable post height of 4.0 mm, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of 30°.

    Prosthetic-level components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are provided for use with previously cleared Medentika multi-unit abutments and MedentiBASE abutments.

    All abutments are provided non-sterile with appropriate abutment screws. The screws attach the abutment to the implant or the prosthesis to the abutment.

    AI/ML Overview

    The provided 510(k) clearance letter and summary describe a medical device, Medentika CAD/CAM Abutments, and its substantial equivalence to predicate devices based on non-clinical performance data. The document does not contain information about acceptance criteria or performance data for an AI/ML-based device, nor does it detail a clinical study involving human readers or expert consensus for ground truth.

    Therefore, for the information requested in your prompt, I can only extract what is presented in the document, which pertains to the non-AI aspects of device acceptance and testing. Many of the points specifically refer to AI/MRMC studies, which are not applicable to this document.

    Here's an analysis based on the provided text:

    Device Description and Purpose:
    The device is "Medentika CAD/CAM Abutments," which are dental implant abutments. The primary purpose of this submission is to expand the fabrication options for patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow" that integrates CAD/CAM software and milling machines. It also adds new sizes and OEM compatibilities.

    Study Type:
    This is a pre-market notification (510(k)) submission seeking substantial equivalence to existing legally marketed devices. It relies heavily on non-clinical performance data to demonstrate that the new manufacturing workflow and expanded compatibilities do not raise new questions of safety or effectiveness.


    Analysis of Requested Information (based on the provided document):

    1. A table of acceptance criteria and the reported device performance:

    The document outlines various performance tests conducted to demonstrate substantial equivalence, but it does not explicitly present a "table of acceptance criteria" with corresponding "reported device performance." Instead, it states that the tests demonstrate sufficient strength or ensure accuracy and reliability.

    Here's a summary of the performance tests and their implied purpose:

    Performance Test CategoryPurpose / Implied Acceptance CriteriaReported Device Performance (Summary)
    Biocompatibility TestingTo ensure the device materials (titanium alloy, zirconia, cement) are safe for use in the human body."Biocompatibility testing of final finished devices... according to ISO 10993-1, ISO 10993-5, and ISO 10993-12" was provided. Implied: The device passed these tests.
    Mechanical Testing (ISO 14801)To demonstrate that the abutments, including zirconia and cement, in combination with compatible implants, have sufficient strength for intended use."Mechanical testing conducted according to ISO 14801... to demonstrate that the subject Medentika CAD/CAM Abutments... have sufficient strength for the intended use" was provided. Implied: The device demonstrated sufficient strength.
    Reverse Engineering Dimensional AnalysisFor new OEM compatibilities, to show that the subject device abutments are compatible with the respective OEM implants."Reverse engineering dimensional analysis for the OEM compatibilities... to demonstrate that the subject device abutments are compatible with the respective OEM implants" was provided. Implied: Compatibility was demonstrated.
    CAD Software ValidationTo demonstrate that maximum and minimum design parameters for the subject devices are locked into the design software and available libraries."Validation of CAD software to demonstrate that the maximum and minimum design parameters... are locked into the design software and available libraries" was provided. Implied: Software validation confirmed design parameter locking.
    CAM Software & Milling Machine ValidationTo ensure the accuracy and reliability of the milling process (verified NC file imports, milling tools, materials, milling strategies, post-processing)."Validation of CAM software and milling machines to ensure the accuracy and reliability of the milling process" was provided. Implied: Accuracy and reliability were confirmed.
    CAM Restriction Zones ValidationTo show avoidance of damage or modification of the connection geometry and locking of restriction zones from user editing in the CAM software."Validation testing of CAM restriction zones to show avoidance of damage or modification of the connection geometry and locking of restriction zones..." was provided. Implied: Restriction zones prevent damage.
    MR Environment AnalysisTo evaluate device compatibility in a Magnetic Resonance (MR) environment."Non-clinical analysis and testing to evaluate the metallic subject devices and compatible dental implants in the MR environment" was referenced from K180564. Implied: Device is compatible or safe in MR environment.
    Sterilization ValidationTo ensure non-sterile devices can be sterilized by the end-user to a specific sterility assurance level."Moist heat sterilization for subject devices provided non-sterile to the end user, validated to a sterility assurance level of 10-6 by the overkill method according to ISO 17665-1 and ISO TR 17665-2" was referenced. Implied: Sterilization method is effective.

    2. Sample size used for the test set and the data provenance:

    • Sample Size for Test Set: The document does not specify numerical sample sizes for any of the non-clinical tests (e.g., how many abutments were mechanically tested, how many software validation tests were run). It simply states that "testing was conducted" or "validation was performed."
    • Data Provenance: The document does not explicitly state the country of origin of the data or whether the studies were retrospective or prospective. Given the nature of pre-market non-clinical testing for medical devices, these are typically prospective laboratory tests conducted by the manufacturer or accredited testing facilities. The manufacturer is Medentika® GmbH (Huegelsheim, Germany), suggesting the testing likely occurred in Germany or at internationally recognized labs.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

    This information is not applicable to the provided document. The ground truth for this device is established through engineering specifications, material standards (e.g., ASTM F136), and validated manufacturing processes, not through human expert consensus on diagnostic images.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:

    This information is not applicable to the provided document, as it describes non-clinical engineering and manufacturing validation, not a multi-reader clinical study for AI.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

    This information is not applicable to the provided document. This device is a physical dental abutment and its associated CAD/CAM workflow, not an AI-based diagnostic tool that would require human reader studies. The document explicitly states: "No clinical data were included in this submission."

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

    This information is not applicable to the provided document. While the device utilizes CAD/CAM software and milling machines, it is a physical product manufactured through a workflow, not a standalone AI algorithm whose performance needs to be assessed in isolation. The software functions as a design and manufacturing aid, not a diagnostic or decision-making algorithm.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):

    The "ground truth" in this context refers to established engineering and material standards:

    • Standards Compliance: Adherence to ISO standards (e.g., ISO 14801 for mechanical strength, ISO 10993 for biocompatibility, ISO 17665 for sterilization).
    • Dimensional Accuracy: Verification against established design parameters and compatibility specifications for dental implants (e.g., OEM implant body and abutment dimensions).
    • Material Specifications: Conformance to ASTM F136 for titanium alloy and specifications for zirconia and cement.
    • Software Design Parameters: The "ground truth" for the CAD software validation is the pre-defined maximum and minimum design parameters that the software must enforce.

    8. The sample size for the training set:

    This information is not applicable to the provided document. The "device" in question is a physical dental abutment and its manufacturing workflow, not an AI/ML model that requires a training set. The CAD/CAM software itself is validated, not "trained" on a dataset in the AI sense.

    9. How the ground truth for the training set was established:

    This information is not applicable to the provided document for the same reasons as point 8.

    Ask a Question

    Ask a specific question about this device

    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    -Healing Abutment, Cover Screw (previously cleared per K210826) MegaGen Prosthetics are intended for use as an aid in prosthetic rehabilitation.
    -Multi-unit Abutment, Multi-unit Angled Abutment (previously cleared per K203808) The Multi-unit Abutment, Multi-unit Angled Abutment is intended to be surgically placed in the maxillary or mandbular arches for the purpose providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals.
    -AnyOne External Implant System (previously cleared per K203554) The AnyOne External Implant System is intended to be surgically placed in the maxillary or mandibular molar areas for the purpose providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing function. Smaller implants (less than 6.0 mm) are dedicated for immediate loading when good primary stability is achieved and with appropriate occlusal loading, Larger implants are dedicated for the molar region and are indicated for delayed loading.
    -AnyOne Onestage Implant System (previously cleared per K210161) The AnyOne Onestage Implant System is intended to be surgically placed in the maxillary or mandibular arches for the purpose of providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing function in the following situations and with the clinical protocols: -Delayed loading. -Immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region.
    -Meg-Ball Attachment System, Meg-Loc Abutment, Meg-Magnet Abutment (previously cleared per K192614) Meg-Ball Attachment System, Meg-Loc Abutment, Meg-Magnet Abutment is intended to be used in the upper or lower jaw and used for supporting tooth replacements to restore chewing function. Intended for fully edentulous jaw retaining a tissue supported overdenture. The abutments in combination with endosseous implants are used as the foundation for anchoring tooth replacements in either jaw. The attachments are used in fixed overdenture restorations that can be attached with a snap-in system.
    -ST Internal Implant System (previously cleared per K192347) The ST Internal Implant System is intended to be surgically placed in the maxillary or mandibular arches for the purpose providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing function. Smaller implants (less than 6.0 mm) are dedicated for immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region and are indicated for delayed loading.
    -AnyRidge Octa 1 Implant System (previously cleared per K182448) The AnyRidge Octa 1 Implant System is intended to be surgically placed in the maxillary or mandibular arches for the purpose of providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing situations and with the clinical protocols: - Delayed loading. - Immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region.

    • Advanced Intermezzo Implant System (previously cleared per K191127) Advanced Intermezzo Implant Systems is threaded one-piece implants designed for orthodontic onestage surgical procedures in upper and lower jaw to provide a means of prosthetic attachment to restore a patient's chewing function. Advanced Intermezzo Implant System consists of single-stage, root-form dental implants. The system is designed to provide immediate provisional implant to provide temporary support for prosthetic devices during the healing phase of permanent root form implants. Depends on a patient's quality of bone condition, Advanced Intermezzo Fixtures are to be removed within six to ten weeks after the surgery. The system is intended for immediate placement in partially or fully edentulous mandibles and maxillae, in support of single or multiple-unit restorations including; cement retained, screw retained, or overdenture restorations.
      -MiNi Internal Implant System (previously cleared per K150537) The MiNi Internal Implant System is intended for two-stage surgical procedures in the following situations and with the following clinical protocols: - The intended use for the 3.0 mm diameter MiNi implant is limited to the replacement of maxillary lateral incisors and mandibular incisors. - Immediate placement in extraction situations with a partially or completely healed alveolar ridge. - It is intended for delayed loading.
      -XPEED ANYRIDGE INTERNAL IMPLANT SYSYEM (previously cleared per K140091) The Xpeed AnyRidge Internal Implant System is intended to be surgically placed in the maxillary or mandibular molar areas for the purpose providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing function. Smaller implants (less than 06.0 mm) are dedicated for immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region and are indicated for delayed loading.
      -ANYONE™ INTERNAL IMPLANT SYSTEM (previously cleared per K123988) The AnyOne™ Internal Implant System is intended to be surgically placed in the maxillary or mandibular molar areas for the purpose providing prosthetic support for dental restorations (Crown, bridges, and overdentures) in partially or fully edentulous individuals. It is used to restore a patient's chewing function. Smaller implants (less than Ø6.0 mm) are dedicated for immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region and are indicated for delayed loading.
      -XPEED ANYRIDGE INTERNAL IMPLANT SYSTEM (previously cleared per K123870) The Xpeed®AnyRidge®Intemal Implant System is intended to be surgically placed in the maxillaryor mandbular molar areas for the purpose providing prosthetic support for dental restorations(Crown, bridges, and overdentures) in partially or filly edentulous individuals. It is used to restore a patient's chewing function. Smaller implants (less than Ø6.0mm) are dedicated for immediate loading when good primary stability is achieved and with appropriate occlusal loading. Larger implants are dedicated for the molar region and are indicated for delayed loading.
    Device Description

    Not Found

    AI/ML Overview

    I am sorry, but the provided text does not contain any information about acceptance criteria or a study proving that a device meets such criteria. The document is primarily an FDA 510(k) clearance letter for the "MegaGen Dental Implant Systems Portfolio - MR Conditional." It lists various implant systems and their indications for use, many of which were previously cleared.

    The letter focuses on regulatory approval, substantial equivalence, and compliance with general controls and other FDA regulations for medical devices. It does not include details on specific performance metrics, clinical studies, sample sizes, ground truth establishment, or expert evaluations that would be necessary to answer your request.

    Ask a Question

    Ask a specific question about this device

    K Number
    K191127
    Date Cleared
    2019-10-08

    (162 days)

    Product Code
    Regulation Number
    872.3640
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K112540, K123870

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Advanced Intermezzo Implant Systems is threaded one-piece implants designed for orthodontic one-stage surgical procedures in upper and lower jaw to provide a means of prosthetic attachment to restore a patient's chewing function. Advanced Intermezzo Implant System consists of single-stage, root-form dental implants. The system is designed to provide immediate provide temporary support for prosthetic devices during the healing phase of permanent root form implants. Depends on a patient's quality of bone condition, Advanced Intermezzo Fixtures are to be removed within six to ten weeks after the surgery. The system is intended for immediate placement in partially or fully edentulous mandibles and maxillae, in support of single or multiple-unit restorations including; cement retained, screw retained, or overdenture restorations.

    Device Description

    The Advanced Intermezzo Fixture is a substructure of a dental implant system made of CP Ti Grade 4 with the surface treated by SLA method. The system offers the following components. - Comfort Cap

    AI/ML Overview

    This document describes a 510(k) premarket notification for the "Advanced Intermezzo Implant System," an endosseous dental implant. The purpose of the 510(k) summary is to demonstrate that the new device is substantially equivalent to legally marketed predicate devices.

    Here's an analysis of the acceptance criteria and supporting studies based on the provided text:

    1. Table of Acceptance Criteria and Reported Device Performance

    The document does not explicitly state "acceptance criteria" in a quantitative manner as one might expect for a typical performance study of a diagnostic device. Instead, the focus is on demonstrating "substantial equivalence" to predicate devices through various tests.

    The primary method for demonstrating substantial equivalence related to performance was a comparative fatigue test.

    While specific numerical acceptance criteria (e.g., minimum force for fatigue failure) are not provided, the reported device performance is that the subject device met the performance of the predicate device.

    Acceptance Criteria (Implied for Substantial Equivalence via Fatigue Test)Reported Device Performance (Summary)
    To demonstrate "substantial equivalence" in fatigue performance compared to the predicate device per ISO 14801.The test result of the fatigue test supported that the subject device is substantially equivalent to the predicate device.

    2. Sample Size Used for the Test Set and Data Provenance

    • Sample Size for Fatigue Testing: The document does not specify the exact sample size used for the comparative fatigue test per ISO 14801. It only states that the test was "conducted on the subject device and primary predicate."
    • Data Provenance: Not explicitly stated as retrospective or prospective, or country of origin for the test data. However, the submitting company, MegaGen Implant Co., Ltd., is located in the Republic of Korea.

    3. Number of Experts Used to Establish Ground Truth for the Test Set and Their Qualifications

    This information is not applicable as this submission is for a medical device (dental implant) and its physical properties (e.g., fatigue strength), not for an AI/diagnostic software where expert ground truth would be established. The "ground truth" here is the physical performance of the device under mechanical stress.

    4. Adjudication Method for the Test Set

    This information is not applicable for the same reason as point 3. Adjudication methods like "2+1" or "3+1" are typically used for establishing ground truth in clinical image interpretation or diagnostic studies.

    5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done

    This information is not applicable. An MRMC study is relevant for evaluating the impact of AI on human reader performance in diagnostic tasks, not for the physical performance of a dental implant.

    6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done

    This information is not applicable. This is not an AI algorithm.

    7. The Type of Ground Truth Used

    The "ground truth" for the device's performance is established through physical testing and engineering standards. Specifically, comparative fatigue testing per ISO 14801 was used. This standard defines methods for dynamic fatigue testing of endosseous dental implants.

    8. The Sample Size for the Training Set

    This information is not applicable as the document describes a physical medical device, not an AI model requiring a training set.

    9. How the Ground Truth for the Training Set Was Established

    This information is not applicable for the same reason as point 8.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1