Search Filters

Search Results

Found 2 results

510(k) Data Aggregation

    K Number
    K250295
    Manufacturer
    Date Cleared
    2025-04-30

    (89 days)

    Product Code
    Regulation Number
    872.3630
    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Dentsply Sirona Titanium Bases system is intended for use in partially or fully edentulous mandibles and maxillae in support of single cement-retained restorations.

    For AT EV 3.0 S, AT TX 3.0 S, BH 3.0 S, and SB L 3.3 L titanium bases, the indication is restricted to the replacement of single lateral incisors in the maxilla and lateral and central incisors in the mandible.

    The system comprises three parts:

    • Abutment Block material (CEREC Cercon 4D Abutment Block)
    • Titanium Base (TiBase)
    • CAD/CAM system

    The TiBase is recommended for use with two-piece hybrid abutments and hybrid abutment crowns, used in conjunction with endosseous dental implants.

    Device Description

    The proposed Dentsply Sirona Titanium Bases system are connected to Dentsply Sirona or third-party dental implants to facilitate the prosthetic dental restoration of edentulous areas of the oral anatomy. The proposed TiBase components are assembled (through extraoral cement bonding) with the patient specific CEREC Cercon 4D Abutment Block (K234018), to form the complete, two-piece CAD/CAM Titanium Base system abutments. The bottom half of the abutment is the TiBase component, which interfaces with the implant system-specific geometry, while the top half of the abutment is the abutment block material that is milled to form either an abutment crown or a meso-structure (the latter is subsequently finished with a crown). The TiBase component therefore serves as the "platform" on which the customized milled abutment crown or the meso-structure is bonded to, forming the complete CAD/CAM Titanium Base system abutment. The completed CAD/CAM Titanium Base system abutment is attached to the dental implant with an abutment screw.

    The TiBase system is part of a workflow that includes CAD/CAM software cleared in predicate device, K193408, CAD/CAM system with CEREC Chairside Software, and reference device, K200191, CAD/CAM System with inLab Software, and the abutment crown and meso-structure material cleared in reference device, K234018.

    The TiBase components are made of the same material as the predicate device (K193408) TiBases, which is titanium alloy Ti6Al4V, complying with ASTM F136-13. While the lower part connects to the implant system, the upper part consists of a tapered, cylindrical center post which is designed to receive the abutment crown or meso-structure to complete the finished CAD/CAM abutment.

    The TiBase components come in small and large sizes depending on the diameter size of the connecting implant. A notch feature on the cylindrical part of the upper portion (i.e. rotational reference and lock) ensures that there is only one position to mount either a scanbody or the abutment crown/meso-structure.

    The TiBase component center post includes a through-channel through which a corresponding abutment screw is inserted to allow retention of the finished abutment to the implant. The abutment screw, made of the same Titanium material, when assembled with the proposed TiBase component, is located in the internal geometry of the titanium base and does not seat in the finalized abutment crown/meso-structure.

    The minimum/maximum design specification limits are as follows:

    • Maximum angulation for the Zirconia top-half material: 20˚
    • Minimum wall thickness of the Zirconia top-half material: 0.5 mm
    • Gingival heights of the TiBase component: 1, 2, 3 mm
    • TiBase component post height (i.e., length above the gingival height): ≥ 4 mm
    AI/ML Overview

    This document is a 510(k) clearance letter for the Dentsply Sirona Titanium Bases system, which specifies its indications for use and compares it to predicate and reference devices to demonstrate substantial equivalence. It does not describe the specific acceptance criteria and detailed study results that prove the device meets those criteria in a format applicable to AI/ML software performance studies.

    The document details the technical aspects of the dental implant components and their mechanical testing for safety and performance (e.g., fatigue testing), biocompatibility, reprocessing validation, and MR compatibility. However, it does not involve the types of performance metrics, test set characteristics, or ground truth establishment typically associated with AI/ML device evaluations.

    Therefore, for aspects related to AI/ML device performance (like accuracy metrics, expert review, MRMC studies, standalone performance), the answer is "Not applicable" or "Not provided" as this is a traditional medical device clearance, not an AI/ML software clearance.

    Here's a breakdown of the requested information based on the provided document:

    1. Table of Acceptance Criteria and Reported Device Performance

    The document describes several non-clinical tests that the device was subjected to and that it "met acceptance criteria" or "showed similar results" to reference devices. However, the specific quantitative acceptance criteria (e.g., "fatigue strength must be > X N") and the exact reported quantitative performance values achieved by the Dentsply Sirona Titanium Bases system are not explicitly stated in this clearance letter. The letter generally refers to compliance with standards.

    For example, for fatigue testing, it states: "The TiBases systems were subjected to fatigue testing per the following requirements and showed similar results when compared to the reference devices (K213961, K241485)" and refers to ISO 14801:2016 and FDA Special Controls Guidance. It does not provide the numerical results or the specific acceptance mechanical load values. The same applies to MR testing, reprocessing, and biocompatibility.

    Acceptance Criteria CategoryReported Device Performance
    Fatigue Testing (per ISO 14801:2016 & FDA Special Controls Guidance)
    Specific quantitative acceptance criteria (e.g., minimum load cycles at specified force) are not explicitly stated."met acceptance criteria" and "showed similar results when compared to the reference devices (K213961, K241485)". (Specific numerical results not provided).
    MR Testing (per ASTM F2052-21, F2213-17, F2119-07, CM&S for RF heating)"met the following requirements and supports the MR Conditional labeling of the TiBases systems." (Specific numerical results not provided).
    Software System Verification (CAD/CAM compatibility)"confirmed that the maximum and minimum design parameters for the customizable two-piece TiBase system abutment device are adequately locked into each of the compatible CAD/CAM software (K193408, K200191) and specifically into the available device design libraries integrated into the software."
    Reprocessing Testing (per ISO 17665-1:2006 & FDA Guidance)"met acceptance criteria." (Specific numerical results not provided; included by reference to K234018).
    Biocompatibility Assessment (per ISO 10993-1:2018 & FDA Guidance)"met acceptance criteria." (Specific numerical results not provided; testing performed via K234018).

    2. Sample size used for the test set and the data provenance

    • Sample Size: Not explicitly stated in terms of the number of unique devices/tests in the provided text. The fatigue testing mentions "the proposed device performs as well as the reference devices (K213961, K241485)," implying a comparison and potentially new tests for the specific new TiBases. However, specific counts are not given.
    • Data Provenance: The studies are non-clinical (laboratory tests) rather than human patient data. Therefore, "country of origin" and "retrospective/prospective" are not applicable in the context of patient data. The tests were performed to demonstrate compliance with international standards (ISO, ASTM) and FDA guidance.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts

    • Not Applicable (N/A). This is a mechanical/material device clearance, not an AI/ML software evaluation based on expert-labeled data. The "ground truth" for these tests refers to the objective results conforming to engineering and material science standards (e.g., a device either fractures at a certain load or it doesn't, a material is biocompatible or not).

    4. Adjudication method for the test set

    • Not Applicable (N/A). Adjudication methods like 2+1 or 3+1 are used for resolving discrepancies in expert labeling for AI/ML ground truth, which is not relevant here.

    5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done

    • No. This is not an AI/ML software device that involves human interpretation of medical images.

    6. If a standalone (i.e., algorithm only without human-in-the-loop performance) was done

    • Not Applicable (N/A). This is a physical device, not an algorithm. The "software system verification" refers to confirming that the CAD/CAM software correctly integrates the design parameters for the physical components, not an AI algorithm's standalone diagnostic performance.

    7. The type of ground truth used

    • For mechanical (fatigue) testing: Compliance with ISO 14801:2016 and FDA guidance, meaning the physical behavior of the device under specified loads.
    • For MR testing: Compliance with ASTM standards, meaning objective measurements of displacement, torque, and image artifacts.
    • For software verification: Conformation that design parameters are correctly implemented in CAD/CAM software.
    • For reprocessing and biocompatibility: Compliance with ISO standards and FDA guidance, meaning objective evaluations of sterility and biological response.

    8. The sample size for the training set

    • Not Applicable (N/A). There is no AI/ML model involved; therefore, no training set.

    9. How the ground truth for the training set was established

    • Not Applicable (N/A). There is no AI/ML model involved; therefore, no training set.
    Ask a Question

    Ask a specific question about this device

    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    ALLONUS Tech Prosthetic is intended for use with dental implants as a support for single or multiple-unit prosthetic restorations in the maxilla or mandible of partially or fully edentulous patient. It is including; cemented retained, screw-retained, or overdenture restorations.

    It is compatible with the following systems:

    • · Astra OsseoSpeed EV(K130999) 3.0
    • · Astra OsseoSpeed EV(K120414) 3.6, 4.2, 4.8, 5.4 mm
    • Tapered Internal Implants (K071638) (K143022) 3.4. 3.8. 4.6. 5.8 mm
    • · BioHorizons Laser-Lok Implant System (K093321) 3.0 mm
    • · Conelog Screw-Line (K113779) 3.3, 3.8, 4.3, 5.0 mm
    • Osstem TSIII SA (K121995) 3.5 (3.7) , 4.0 (4.2) , 4.5 (4.6) , 5.0 (5.1), 6.0 (6.0), 7.0 (6.8) mm (Mini. Regular)
    • · Megagen AnyRidge Internal Implant System (K140091) 4.0, 4.4, 4.9, 5.4 (3.1)
    • · Neodent Implant System GM Helix (K163194, K180536) 3.5, 3.75, 4.0, 4.3, 5.0 (3.0) 6.0 (3.0)
    • · Nobel Active 3.0 (K102436) 3.0
    • · Nobel Active Internal Connection Implant (K071370) NP RP
    • · Nobelactive Wide Platform (Wp) (K133731) WP
    • Straumann BLX Implant (K173961, K181703, K191256) 3.5, 3.75, 4.5, 5.5, 6.5 (RB, WB)
    • · Straumann 02.9 mm Bone Level Tapered Implants, SC CARES Abutments (K162890) 2.9 (SC)
    • · Straumann® Bone Level Tapered Implants (K140878) 3.3, 4.1, 4.8 (NC, RC)
    • · Zimmer 3.1mmD Dental Implant System (K142082) 3.1 (2.9)
    • (Ti-base only) Screw Vent® and Tapered Screw Vent® (K013227) 3.7(3.5), 4.7(4.5), 6.0(5.7)

    All digitally designed abutments and/or coping for use with the abutments are intended to be sent to a ALLONUS Tech-validated milling center for manufacture.

    Device Description

    ALLONUS Tech Prosthetic is made of titanium alloy (Ti-6AI-4V ELI, ASTM F136) intended for use as an aid in prosthetic restoration. It consists of Pre-Milled Blank abutment, Ti-Base Abutment, and Multi-unit Abutment and Components (Multi-unit Healing Cap, Multi-unit Temporary cylinder, Multi-unit Ti-cylinder).

    Pre-Milled Blank has a pre-manufactured implant interface connection interface with a customizable cylindrical area-by CAD/CAM- above the implant-abutment interface.

    Ti Base consists of a two-piece abutment, where the titanium base is a pre-manufactured component of the abutment that will be used to support a CAD/CAM-designed zirconia superstructure (the second part of the two-piece abutment) that composes the final abutment.

    Multi-unit Abutment which are placed into the dental implant to provide support for the prosthetic restoration. The abutments are made of Titanium grade Ti-6A1-4V ELI (meets ASTM Standard F-136). Multi-unit Abutment includes abutments and components (Multi-unit Healing Cap, Multi-unit Temporary cylinder, Multi-unit Ti-cylinder). Multi-unit Abutment - are provided in various gingival cuff height ranging from 1 to 6 mm.

    All digitally designed abutments and/or coping for use with the abutments are intended to be sent to a ALLONUS Tech-validated milling center for manufacture.

    AI/ML Overview

    The provided text is a 510(k) Summary for the ALLONUS Tech Prosthetic, which is an endosseous dental implant abutment. It details the device's technical characteristics and compares it to predicate devices to establish substantial equivalence, rather than describing a study that proves the device meets specific acceptance criteria for a new and novel performance claim.

    Therefore, many of the requested categories for acceptance criteria and study details are not directly applicable or available in this type of submission. The information provided primarily focuses on demonstrating equivalence through comparison to existing legally marketed devices, material properties, and standard performance tests for similar devices.

    However, I can extract the relevant information that is available from the document for each type of device within the ALLONUS Tech Prosthetic family: Pre-Milled Blank, Ti Base, Multi-Unit Abutment, Multi-Unit Healing Cap, Multi-Unit Temporary Cylinder, and Multi-Unit Ti-Cylinder.


    General Information on Acceptance Criteria and Studies for ALLONUS Tech Prosthetic (as inferred from the 510(k) Summary):

    The ALLONUS Tech Prosthetic is claiming substantial equivalence to predicate devices, meaning it does not need to establish new performance criteria but rather demonstrate that it is as safe and effective as existing legally marketed devices. The "acceptance criteria" here are largely implied by the performance of the predicate devices and the relevant ISO standards for dental implant abutments. The studies performed are non-clinical bench tests.

    1. Table of Acceptance Criteria (Inferred from Comparison) and Reported Device Performance:

    The document presents comparisons to predicate devices to establish substantial equivalence rather than explicit acceptance criteria and corresponding performance metrics for novel claims. However, the design limits of the subject devices are compared to the design limits of the predicate devices, which act as de facto acceptance criteria in the context of substantial equivalence. The device's performance is demonstrated by meeting the standards in non-clinical testing.

    Here's a generalized table summarizing this approach:

    Feature/TestAcceptance Criteria (Based on Predicate/Standards)Reported Device Performance (Subject Device)
    MaterialsTi-6Al-4V ELI (ASTM F136) for metallic components, Zirconia Oxide for Ti-Base superstructureTi-6Al-4V ELI (ASTM F136) for Pre-Milled Blank, Multi-Unit Abutment, Healing Cap, Temporary Cylinder, Ti-Cylinder. Ti-6Al-4V ELI (ASTM F136) and Zirconia Oxide (InCoris Zi) for Ti Base.
    Fatigue Test (ISO 14801:2016)Met criteria of the standard.Met criteria of the standard. (Page 23)
    End-User Steam Sterilization (ISO 17665-1:2006, 17665-2:2009, ANSI/AAMI ST79:2010)Met criteria of the standard.Met criteria of the standard. (Page 23)
    Biocompatibility (ISO 10993-1:2009, -5:2009, -10:2010)Met criteria of the standard.Met criteria of the standard. (Page 23)
    Implant-to-Abutment CompatibilityDemonstrated by reverse engineering and assessment of OEM components.Demonstrated compatibility with various OEM implant systems (listed in Indications for Use). Reverse engineering included assessment of maximum and minimum dimensions of critical design aspects and tolerances of OEM implant body, OEM abutment, OEM abutment screw, along with cross-sectional images of the subject device and compatible implant body. (Page 24)
    MR Safety (FDA Guidance "Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment")Demonstrated substantial equivalence to predicate devices using scientific rationale and published literature for magnetically induced displacement force and torque.Non-clinical worst-case MRI review performed; rationale addressed parameters per FDA guidance. Results demonstrated substantial equivalence to predicate devices. (Page 24)
    Design Limits (examples)Pre-Milled Blank: Post Angle: 0-30°, Diameter: 3.0-7.0 mm (Predicate) Ti Base: Post Angle: 0-30°, Diameter: 3.0-7.0 mm (Predicate) Multi-Unit Abutment: Diameter: 4.8 mm, Gingival Height: 1.5-4.5 mm, Angle: 0, 17, 30° (Reference Device)Pre-Milled Blank: Design limits are "slightly different" but within diameter and angle range of predicate. (Page 11) Specific limits are provided in a table on page 7 for various compatible systems (e.g., Min Gingival Height: 0.5 mm, Max Gingival Height: 5.0-6.0 mm, Min Wall Thickness: 0.3-0.6 mm, Min Post Height: 4.0-4.3 mm). Ti Base: Post Angle: 0-15°, Gingival Height: 0.5-5.0 mm, Post Height: 4.0-6.0 mm, Diameter: 5.0-8.0 mm, Thickness: 0.4 mm. These are "slightly different" but within diameter and angle range of predicate. (Page 17) Multi-Unit Abutment: Diameter: 4.8 mm, Gingival Height: 1, 2, 3, 4, 5, 6 mm, Angle: 0, 17, 29°. Diameter is "slightly big," gingival height "slightly different," angles "within the predicate device's range." (Page 18)
    SterilityNon-sterile (Predicate)Non-sterile (All subject devices)
    Indications for Use / Intended UseSimilar to predicate devicesALLONUS Tech Prosthetic is intended for use with dental implants as a support for single or multiple-unit prosthetic restorations in the maxilla or mandible of partially or fully edentulous patients, including cemented-retained, screw-retained, or overdenture restorations. Compatible with various specific implant systems. (Pages 3, 9, 10, 16, 17, 18, 19, 20, 21, 22)

    2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective):

    • Test Set Sample Size:
      • The document does not specify the exact sample sizes used for the non-clinical bench tests (fatigue, sterilization, biocompatibility, or dimensional analysis). It only states that tests were performed "for the subject device" and "of the worst-case scenario through fatigue testing."
    • Data Provenance:
      • The 510(k) submission is from ALLONUS Tech Co., LTD. in the REPUBLIC OF KOREA. This implies the testing was likely conducted in or overseen by this entity.
      • The studies were non-clinical bench tests, not clinical studies involving human patients. Therefore, terms like "retrospective" or "prospective" clinical dataProvenance are not applicable here.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

    • This information is not provided in the 510(k) Summary. For non-clinical bench testing, "ground truth" is typically established by recognized international standards (e.g., ISO, ASTM) and engineering principles, rather than expert consensus on clinical cases.
    • The document mentions "Dimensional analysis and reverse engineering... were performed" and "assessment of maximum and minimum dimensions... along with cross-sectional images." This suggests engineering expertise, but specific numbers or qualifications of experts are not stated.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:

    • This is not applicable as the studies were non-clinical bench tests. Adjudication methods like 2+1 (two readers plus one adjudicator) are used in clinical studies, particularly for diagnostic imaging, to resolve discrepancies in expert interpretations of patient data.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

    • No, an MRMC comparative effectiveness study was not done. This type of study (MRMC) is relevant for diagnostic AI devices that assist human interpretation of medical images or data. The ALLONUS Tech Prosthetic is a physical medical device (dental implant abutment), not an AI diagnostic tool.

    6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:

    • No, a standalone (algorithm-only) performance study was not done. This question is also typically relevant for AI/software as a medical device (SaMD). The ALLONUS Tech Prosthetic is a physical device that integrates with human dental procedures.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc):

    • For the non-clinical tests (fatigue, sterilization, biocompatibility), the "ground truth" is adherence to recognized international standards (ISO, ASTM) and established engineering specifications.
    • For implant-to-abutment compatibility, the "ground truth" was based on dimensional analysis and reverse engineering of OEM implant bodies, abutments, and screws, comparing the subject device's design to established OEM specifications.

    8. The sample size for the training set:

    • This is not applicable. "Training set" refers to data used to train machine learning algorithms. The ALLONUS Tech Prosthetic is a physical medical device, not an AI/ML algorithm.

    9. How the ground truth for the training set was established:

    • This is not applicable as there is no training set for a physical medical device.
    Ask a Question

    Ask a specific question about this device

    Page 1 of 1