Search Filters

Search Results

Found 4 results

510(k) Data Aggregation

    Why did this record match?
    Device Name :

    Medentika CAD/CAM Abutments

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, and Titanium base ASC Flex are intended for use with dental implants as a support for single or multiple tooth protheses in the maxilla or mandible of a partially or fully edentulous patient. Abutment-level prosthetic components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are intended for use as a support for multi-unit screw-retained bridges and bars in the maxilla or mandible of a partially or fully edentulous patient.

    All digitally designed abutments for use with PreFace abutment, TI-Forms abutment, Titanium base 2nd generation, Titanium base ASC Flex, Multi-unit Titanium Base, Multi-unit Titanium Cap, and MedentiBASE Titanium Base are intended to be sent to an FDA-registered Medentika validated milling center for manufacture or to be manufactured according to the digital dentistry workflow, which integrates multiple components: Scans from desktop and intra oral scanners, CAD and CAM software and milling machine with associated accessories.

    Medentika abutments for the Nobel Biocare Nobel Active® 3.0 mm, Dentsply Sirona Astra Tech OsseoSpeed EV® 3.0 mm and TX® 3.0 mm, Straumann Bone Level 2.9 implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.

    Device Description

    The subject devices are Medentika CAD/CAM Abutments, which primarily expand the options for fabricating patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow". This workflow uses scan files from intra-oral and lab (desktop) scanners, CAD software, CAM software, ceramic material, milling machines, and associated tooling and accessories. The devices include Titanium Base abutments, Titanium base ASC Flex abutments, and PreFace and TI-Form (blanks) abutments.

    The abutments are made of titanium alloy (Ti-6Al-4V ELI). Titanium base abutments also include a zirconia superstructure. The specified zirconia materials for milling superstructures are Ivoclar Vivadent IPS e.max ZirCAD Prime, Ivoclar Vivadent IPS e.max ZirCAD Prime Esthetic, Amann Girrbach Zolid Bion, Amann Girrbach Zolid Gen-X, and Institut Straumann AG n!ce Zirkonia HT. The specified cement for bonding superstructures is Multilink Hybrid Abutment Cement from Ivoclar Vivadent AG.

    Key design parameters for CAD/CAM zirconia superstructures (on Titanium base and Titanium base ASC Flex) include: minimum wall thickness of 0.5 mm, minimum cementable post height of 4.0 mm for single unit restorations, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of the final abutment of 30°.

    PreFace and TI-Forms abutments (blanks) are used by dental laboratories to fabricate customized abutments from titanium alloy. Their design parameters include: minimum wall thickness of 0.4 mm, minimum cementable post height of 4.0 mm, maximum gingival margin height of 5.0 mm, minimum gingival margin height of 0.5 mm, and maximum angulation of 30°.

    Prosthetic-level components (Multi-unit Titanium Base, Multi-unit Titanium Cap, MedentiBASE Titanium Base) are provided for use with previously cleared Medentika multi-unit abutments and MedentiBASE abutments.

    All abutments are provided non-sterile with appropriate abutment screws. The screws attach the abutment to the implant or the prosthesis to the abutment.

    AI/ML Overview

    The provided 510(k) clearance letter and summary describe a medical device, Medentika CAD/CAM Abutments, and its substantial equivalence to predicate devices based on non-clinical performance data. The document does not contain information about acceptance criteria or performance data for an AI/ML-based device, nor does it detail a clinical study involving human readers or expert consensus for ground truth.

    Therefore, for the information requested in your prompt, I can only extract what is presented in the document, which pertains to the non-AI aspects of device acceptance and testing. Many of the points specifically refer to AI/MRMC studies, which are not applicable to this document.

    Here's an analysis based on the provided text:

    Device Description and Purpose:
    The device is "Medentika CAD/CAM Abutments," which are dental implant abutments. The primary purpose of this submission is to expand the fabrication options for patient-specific final abutments from a "validated milling center" to a "digital dentistry workflow" that integrates CAD/CAM software and milling machines. It also adds new sizes and OEM compatibilities.

    Study Type:
    This is a pre-market notification (510(k)) submission seeking substantial equivalence to existing legally marketed devices. It relies heavily on non-clinical performance data to demonstrate that the new manufacturing workflow and expanded compatibilities do not raise new questions of safety or effectiveness.


    Analysis of Requested Information (based on the provided document):

    1. A table of acceptance criteria and the reported device performance:

    The document outlines various performance tests conducted to demonstrate substantial equivalence, but it does not explicitly present a "table of acceptance criteria" with corresponding "reported device performance." Instead, it states that the tests demonstrate sufficient strength or ensure accuracy and reliability.

    Here's a summary of the performance tests and their implied purpose:

    Performance Test CategoryPurpose / Implied Acceptance CriteriaReported Device Performance (Summary)
    Biocompatibility TestingTo ensure the device materials (titanium alloy, zirconia, cement) are safe for use in the human body."Biocompatibility testing of final finished devices... according to ISO 10993-1, ISO 10993-5, and ISO 10993-12" was provided. Implied: The device passed these tests.
    Mechanical Testing (ISO 14801)To demonstrate that the abutments, including zirconia and cement, in combination with compatible implants, have sufficient strength for intended use."Mechanical testing conducted according to ISO 14801... to demonstrate that the subject Medentika CAD/CAM Abutments... have sufficient strength for the intended use" was provided. Implied: The device demonstrated sufficient strength.
    Reverse Engineering Dimensional AnalysisFor new OEM compatibilities, to show that the subject device abutments are compatible with the respective OEM implants."Reverse engineering dimensional analysis for the OEM compatibilities... to demonstrate that the subject device abutments are compatible with the respective OEM implants" was provided. Implied: Compatibility was demonstrated.
    CAD Software ValidationTo demonstrate that maximum and minimum design parameters for the subject devices are locked into the design software and available libraries."Validation of CAD software to demonstrate that the maximum and minimum design parameters... are locked into the design software and available libraries" was provided. Implied: Software validation confirmed design parameter locking.
    CAM Software & Milling Machine ValidationTo ensure the accuracy and reliability of the milling process (verified NC file imports, milling tools, materials, milling strategies, post-processing)."Validation of CAM software and milling machines to ensure the accuracy and reliability of the milling process" was provided. Implied: Accuracy and reliability were confirmed.
    CAM Restriction Zones ValidationTo show avoidance of damage or modification of the connection geometry and locking of restriction zones from user editing in the CAM software."Validation testing of CAM restriction zones to show avoidance of damage or modification of the connection geometry and locking of restriction zones..." was provided. Implied: Restriction zones prevent damage.
    MR Environment AnalysisTo evaluate device compatibility in a Magnetic Resonance (MR) environment."Non-clinical analysis and testing to evaluate the metallic subject devices and compatible dental implants in the MR environment" was referenced from K180564. Implied: Device is compatible or safe in MR environment.
    Sterilization ValidationTo ensure non-sterile devices can be sterilized by the end-user to a specific sterility assurance level."Moist heat sterilization for subject devices provided non-sterile to the end user, validated to a sterility assurance level of 10-6 by the overkill method according to ISO 17665-1 and ISO TR 17665-2" was referenced. Implied: Sterilization method is effective.

    2. Sample size used for the test set and the data provenance:

    • Sample Size for Test Set: The document does not specify numerical sample sizes for any of the non-clinical tests (e.g., how many abutments were mechanically tested, how many software validation tests were run). It simply states that "testing was conducted" or "validation was performed."
    • Data Provenance: The document does not explicitly state the country of origin of the data or whether the studies were retrospective or prospective. Given the nature of pre-market non-clinical testing for medical devices, these are typically prospective laboratory tests conducted by the manufacturer or accredited testing facilities. The manufacturer is Medentika® GmbH (Huegelsheim, Germany), suggesting the testing likely occurred in Germany or at internationally recognized labs.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

    This information is not applicable to the provided document. The ground truth for this device is established through engineering specifications, material standards (e.g., ASTM F136), and validated manufacturing processes, not through human expert consensus on diagnostic images.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:

    This information is not applicable to the provided document, as it describes non-clinical engineering and manufacturing validation, not a multi-reader clinical study for AI.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

    This information is not applicable to the provided document. This device is a physical dental abutment and its associated CAD/CAM workflow, not an AI-based diagnostic tool that would require human reader studies. The document explicitly states: "No clinical data were included in this submission."

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

    This information is not applicable to the provided document. While the device utilizes CAD/CAM software and milling machines, it is a physical product manufactured through a workflow, not a standalone AI algorithm whose performance needs to be assessed in isolation. The software functions as a design and manufacturing aid, not a diagnostic or decision-making algorithm.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):

    The "ground truth" in this context refers to established engineering and material standards:

    • Standards Compliance: Adherence to ISO standards (e.g., ISO 14801 for mechanical strength, ISO 10993 for biocompatibility, ISO 17665 for sterilization).
    • Dimensional Accuracy: Verification against established design parameters and compatibility specifications for dental implants (e.g., OEM implant body and abutment dimensions).
    • Material Specifications: Conformance to ASTM F136 for titanium alloy and specifications for zirconia and cement.
    • Software Design Parameters: The "ground truth" for the CAD software validation is the pre-defined maximum and minimum design parameters that the software must enforce.

    8. The sample size for the training set:

    This information is not applicable to the provided document. The "device" in question is a physical dental abutment and its manufacturing workflow, not an AI/ML model that requires a training set. The CAD/CAM software itself is validated, not "trained" on a dataset in the AI sense.

    9. How the ground truth for the training set was established:

    This information is not applicable to the provided document for the same reasons as point 8.

    Ask a Question

    Ask a specific question about this device

    Why did this record match?
    Device Name :

    Medentika Abutment System, Medentika CAD/CAM Abutments, Medentika CAD/CAM TiBases, Medentika Multi-unit

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Medentika abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
    Medentika abutments for the Dentsply Sirona Astra Tech OsseoSpeed EV 3.0mm and TX 3.0mm implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.
    Medentika TiBase CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient. Medentika TiBase is intended for use with the Straumann® CARES® System. All digitally designed copings and/or crowns are intended to be sent to Straumann for manufacture at a validated milling center.
    Medentika abutments for the Nobel Biocare Nobel Active®* 3.0mm, Dentsply Sirona Astra Tech OsseoSpeed EV®* 3.0mm and TX®* 3.0mm implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.
    Medentika PreFace CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.
    Medentika Preface is intended for use with the Straumann® CARES® System. All digitally designed abutments for use with Medentika CAD/CAM Abutments are intended to be manufactured at a Straumann® CARES® validated milling center. The final patient matched form is a MedentiCAD abutment.
    Medentika abutments for the Dentsply Sirona Astra Tech OsseoSpeed EV 3.0mm implant bodies are indicated for maxillary lateral and mandibular central/lateral incisors only.
    Multi-unit abutments are indicated for use with dental implants as a support for multi-unit screw retained bridges and bars in the maxilla or mandible of a partially or fully edentulous patient.

    Device Description

    The Medentika abutments include abutments, abutment screws, caps, and bases which are labelled under a specific Medentika series and are compatible with a specified dental implant system. The abutments include sinqle-unit abutments intended for use with dental implants as a support for single or multiple tooth protheses in the maxilla or mandible of a partially or fully edentulous patient. The abutments also include multi-unit abutments indicated for use with dental implants as a support for multi-unit screw retained bridges and bars in the maxilla or mandible of a partially or fully edentulous patient.
    The purpose of this premarket notification is to add additional abutments. The subject abutments include abutments compatible with additional dental implant systems forming a new Medentika series (the OT series). The subject abutments also include abutments compatible with new implant diameters in existing Medentika series (E, EV, F, and S). Lastly, the subject abutments include new abutment designs compatible with existing implant diameters in existing Medentika series (R).

    AI/ML Overview

    This looks like a 510(k) Summary for a medical device (dental abutments), which means the document is about proving "substantial equivalence" to a predicate device, not about proving clinical effectiveness or performance against pre-defined acceptance criteria in the way one might for a novel AI/software medical device.

    Therefore, the information requested in your bullet points (e.g., acceptance criteria table, sample size for test set, number of experts for ground truth, MRMC study, standalone performance, training set details) is not applicable to this type of regulatory submission because the device is a mechanical one, not an AI/software device. The data presented here is focused on demonstrating physical and mechanical compatibility and equivalence to previously cleared devices.

    Here's why each point is not applicable and what information is provided:

    1. A table of acceptance criteria and the reported device performance: This document doesn't provide a typical "acceptance criteria" table as would be seen for an AI/software device measuring diagnostic performance (e.g., sensitivity, specificity, AUC). Instead, it relies on demonstrating that the new abutments perform similarly to existing, cleared abutments through "dynamic fatigue testing" and "dimensional analysis and reverse engineering." The performance is implicitly "accepted" if these tests show equivalence to the predicate.

    2. Sample sized used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective): No "test set" in the context of diagnostic performance is mentioned. The "testing" refers to non-clinical, physical testing (fatigue, dimensional analysis). There is no patient data involved in this type of submission for a mechanical device.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience): Not applicable. Ground truth, in the AI/software sense, is not established for this device. The "truth" is based on engineered specifications and physical testing.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable. No human adjudication of diagnostic output is relevant here.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable. This is not an AI-assisted device.

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done: Not applicable. This is not an algorithm.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc): Not applicable. The "ground truth" is engineering specifications and physical measurements.

    8. The sample size for the training set: Not applicable. There is no AI/machine learning component to "train."

    9. How the ground truth for the training set was established: Not applicable for the same reason as above.

    What the document does provide regarding device performance and testing:

    • Type of Testing:

      • Dynamic fatigue testing according to FDA guidance and ISO 14801 (Dentistry - implants dynamic loading test for endosseous dental implants).
      • Dimensional analysis and reverse engineering of the implant-to-abutment connection platform.
      • Sterilization validation (steam and gamma irradiation) referenced from K191123, ISO 17665-1, ISO/TS 17665-2, ISO 11137-1, ISO 11137-2.
      • Sterile packaging validation referenced from K191123, ISO 11607-1, ISO 11607-2.
      • Biocompatibility evaluations referenced from K142167, K170838, K191123, K150203, K061804 in accordance with ISO 10993-1.
      • MR testing referenced from K180564 in accordance with ASTM F2052-15, ASTM F2213-06 (2011), ASTM F2182-11a, and ASTM F2119-13.
    • Conclusion: The tests demonstrated "implant to abutment compatibility" and "established substantial equivalency of the proposed device with predicate devices." This is the "proof" that the device meets the (implicit) acceptance of being substantially equivalent to existing, legally marketed devices.

    In summary, this document is for a traditional mechanical medical device, and the regulatory pathway does not involve performance studies in the way you've outlined for AI/software-based devices.

    Ask a Question

    Ask a specific question about this device

    K Number
    K180564
    Manufacturer
    Date Cleared
    2019-01-07

    (308 days)

    Product Code
    Regulation Number
    872.3630
    Reference & Predicate Devices
    Why did this record match?
    Device Name :

    Medentika Abutment System, Medentika CAD/CAM Abutments, Medentika CAD/CAM TiBases

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Medentika abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Medentika Preface CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Medentika TiBase CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Device Description

    The subject devices comprise the metallic endosseous dental implant abutments and metallic prosthetic superstructures cleared to market in the United States as of December 15, 2017 under K170838, K150203, and K142167 by Medentika GmbH as part of the Medentika Multi-Platform System.

    Medentika Multi-Platform System is an abutment system including eleven abutment designs compatible with twelve currently marketed implant systems. The abutment designs include abutments for single-tooth and multiple-tooth restoration for supporting cement-retained, screw-retained or overdenture prostheses. Platform diameters range from 3.3 mm to 7.0 mm. Corresponding implant diameters range from 3.25 mm to 7.0 mm. Angled abutment designs for connections with anti-rotational features are available in two orientations, Type 1 and Type 2. Type 1 is for abutments with the cone angle oriented toward the flat of the anti-rotational feature and Type 2 is for abutments with the cone angle oriented toward the corner or lobe of the anti-rotational feature. The maximum angle for any abutment within the eleven systems is 21°.

    The TiBases are titanium bases to be used as the lower part of two-piece abutments. The upper part of the two-piece abutment is a CAD/CAM designed and manufactured restoration. The TiBases are provided in several models and dimensions, according to the compatible implant systems declared in the Indications for Use statement.

    The assessment of these devices in the MR environment has not resulted in any changes to the devices themselves. The proposed labeling change provides the parameters under which a patient having a restoration constructed using the devices of the Medentika Multi-Platform System can safely undergo an MRI scan.

    The stock endossoues dental implant abutments are fabricated from titanium-aluminumvanadium (TAV) alloy and noble metal alloys. The CADCAM abutments are fabricated from commercially pure titanium. The materials for the TiBase copings and/or crowns include zerion and IPS e.max CAD.

    AI/ML Overview

    Here's a breakdown of the acceptance criteria and the study that proves the device meets them, based on the provided text:

    1. Table of Acceptance Criteria and Reported Device Performance

    Acceptance Criteria / Performance MetricReported Device Performance
    MR Conditional designationThe Medentika Multi-Platform System (including Medentika Abutment System, Medentika CAD/CAM Abutments, and Medentika CAD/CAM TiBases) is MR Conditional.
    Static magnetic field for safe scanning1.5 Tesla and 3 Tesla, only
    Maximum spatial gradient magnetic field for safe scanning4,000 gauss/cm (40 T/m)
    Maximum whole body averaged Specific Absorption Rate (SAR) for safe scanning2 W/kg (for 15 minutes of scanning per pulse sequence)
    Maximum head averaged SAR for safe scanning3.2 W/kg (for 15 minutes of scanning per pulse sequence)
    Maximum temperature rise after 15 minutes of continuous scanning (per pulse sequence)4.9°C
    Extent of image artifact (when imaged with a gradient echo pulse sequence and a 3 Tesla MR system)Approximately 10 mm from the device

    2. Sample Size Used for the Test Set and Data Provenance

    The provided text describes non-clinical testing performed on the device itself to establish its MR compatibility. It does not refer to a "test set" in the context of clinical data (e.g., patient images). Therefore, clinical sample size and data provenance (country of origin, retrospective/prospective) are not applicable here. The testing involved various configurations of the metallic implantable devices of the Medentika Multi-Platform System (worst-case constructs).

    3. Number of Experts Used to Establish Ground Truth and Qualifications of Experts

    This information is not applicable. The study is a non-clinical, laboratory-based assessment of device physical properties in an MR environment, not a study involving human interpretation of medical images. The "ground truth" here is derived from standardized testing methods as outlined by ASTM and FDA guidance.

    4. Adjudication Method for the Test Set

    This information is not applicable for the same reasons as point 3.

    5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study

    No. This study examines the device's physical compatibility with MRI, not human reader performance with or without AI assistance.

    6. Standalone (Algorithm Only Without Human-in-the-Loop Performance) Study

    No. This study is a non-clinical evaluation of the device's physical properties, not an algorithm's performance.

    7. Type of Ground Truth Used

    The ground truth for this study is based on physical measurements and standardized tests according to established guidelines and standards:

    • FDA Guidance entitled "Establishing Safety and Compatibility of Passive Implants in the Magnetic Resonance (MR) Environment" (August 2014)
    • FDA Guidance document entitled "Assessment of Radiofrequency-Induced Heating in the Magnetic Resonance (MR) Environment for Multi-Configuration Passive Medical Devices" (June 29, 2015)
    • ASTM F2052-15: Standard Test Method for Measurement of Magnetically Induced Displacement Force on Passive Implants in the Magnetic Resonance Environment
    • Shellock, et al. procedure for torsional force (accepted as an alternative to ASTM F2213-06 (2011))
    • ASTM F2182-11a: Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging
    • ASTM F2119-13: Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants

    8. Sample Size for the Training Set

    This information is not applicable as this is a non-clinical device safety study, not a machine learning model development or validation study.

    9. How the Ground Truth for the Training Set Was Established

    This information is not applicable for the same reasons as point 8.

    Ask a Question

    Ask a specific question about this device

    K Number
    K150203
    Manufacturer
    Date Cleared
    2015-10-23

    (267 days)

    Product Code
    Regulation Number
    872.3630
    Why did this record match?
    Device Name :

    Medentika CAD/CAM Abutments

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Medentika TiBase CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Medentika PreFace CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Device Description

    The subject device includes two CAD/CAM abutment designs, the Medentika TiBase and the Medentika PreFace. The TiBase is a two-piece abutment used as a base when fabricating a zirconia superstructure and the PreFace is an abutment used in fabricating a full patient-specific abutment in titanium alloy. Both abutment designs are provided non-sterile and are intended to be sterilized by the clinician. Medentika Preface Abutment is available in diameters 3.0 mm to 7.0 mm. Medentika TiBase Abutment is available in diameters 3.25 mm to 7.0 mm. The specific diameters for each Series coordinate with the compatible implant systems and sizes listed below.

    TiBase is available in two post designs. TiBase Generation 1 has a conically shaped post that is 4.0 mm high and TiBase Generation 2 has a parallel walled post shape that is 5.5 mm high. PreFace is available in one cylinder height of 20 mm. The maximum angle for abutments fabricated using TiBase or PreFace is 30°, the maximum gingival height is 6 mm and the minimum post height is 4 mm.

    Medentika CAD/CAM Abutments are compatible with eleven dental implant systems. Each Medentika abutment series has a precision implant/abutment interface corresponding to the implant system predicate for that series.

    AI/ML Overview

    The provided document is a 510(k) premarket notification for Medentika CAD/CAM Abutments, asserting substantial equivalence to legally marketed predicate devices. It does not describe a study involving an AI/ML powered device, nor does it detail acceptance criteria related to such a device's performance. Instead, it focuses on non-clinical testing to demonstrate safety and effectiveness for a dental abutment. Therefore, I cannot extract the requested information regarding acceptance criteria, study design for AI/ML performance, ground truth establishment, or human-in-the-loop studies from this document.

    The "Performance Data" section (Page 6/7) explicitly states the types of non-clinical testing conducted:

    • Engineering analysis and dimensional analysis: To determine compatibility with original manufacturers' components.
    • Static and dynamic compression-bending testing: According to ISO 14801 (Dentistry – Implants – Dynamic fatigue test for endosseous dental implants).
    • Sterilization testing: According to ISO 17665-1 and ISO 17665-2 to demonstrate an SAL of 10^-6.
    • Biocompatibility testing: For cytotoxicity according to ISO 10993-5.

    The acceptance criteria would be the successful completion of these tests in accordance with the specified ISO standards and demonstrating compatibility and performance comparable to the predicate devices. However, the document does not list the quantitative acceptance criteria or the specific numerical results obtained for each test (e.g., specific fatigue life, or precise dimensional tolerances met).

    In summary, the document does not contain the information required to answer the prompt as it pertains to AI/ML device performance. The device is a physical medical device (dental abutments), and the review is for substantial equivalence based on physical and mechanical properties, not an AI/ML algorithm.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1