Search Filters

Search Results

Found 2 results

510(k) Data Aggregation

    K Number
    K151621
    Date Cleared
    2016-01-13

    (211 days)

    Product Code
    Regulation Number
    872.3630
    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    BioHorizons CAD/CAM Abutments are dental abutments placed onto a dental implant to provide support for dental prosthetic restorations. The abutments include: 1) Titanium abutment blanks with a pre-machined implant connection where the upper portion may be custom-milled in accordance with a patient-specific design using CAD/CAM techniques; and 2) Titanium bases with a pre-machined implant connection upon which a CAD/CAM designed superstructure may be fitted to complete a two-piece dental abutments include an abutment screw for fixation to the underlying implant. The abutments may be used for single-unit (single-tooth) or multiple-unit (bridges and bars) restorations and are compatible for use with BioHorizons Internal and Tapered Internal implant systems and Zimmer® Dental Screw-Vent® and Tapered Screw-Vent® implants with 3.5mm, 4.5mm and 5.7mm internal hex-connection mating platform diameters.

    All digitally designed abutments and/or copings for use with BioHorizons CAD/CAM Abutments are intended to be sent to a BioHorizons-validated milling center for manufacture. BioHorizons abutments designed using CAD/CAM techniques must fulfill the BioHorizons allowable range of design parameters.

    Device Description

    BioHorizons CAD/CAM Abutments are dental implant final restorative abutments supplied in platform diameters of 3.0mm, 3.5mm, 4.5mm and 5.7mm. The abutments are intended to provide support for dental prosthetic restorations. Each abutment includes an abutment screw for fixation to the underlying implant. Abutment material is titanium alloy as specified in ASTM F136 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy (UNS R56401) for Surgical Implant Applications.

    Select abutments are further processed by applying patterns of micro-machined grooves or channels, known as Laser-Lok, to a specified region of the abutment margin. The abutments are provided non-sterile, and they are packaged using materials known in the industry to be appropriate for medical device packaging.

    AI/ML Overview

    Here's an analysis of the provided text regarding acceptance criteria and supporting studies for the BioHorizons CAD/CAM Abutments:

    The document primarily focuses on demonstrating substantial equivalence to predicate devices for regulatory approval (510(k)). This means the "acceptance criteria" are largely based on showing the device performs comparably to existing, legally marketed devices, rather than establishing de novo performance targets. The "studies" are tests conducted to support this claim of equivalence.


    Acceptance Criteria and Reported Device Performance

    The document doesn't explicitly list numerical acceptance criteria in a typical pass/fail format with specific thresholds. Instead, the acceptance criteria are implicitly defined by the performance of the predicate devices and relevant industry standards. The reported device performance is demonstrated through various tests designed to show that the BioHorizons CAD/CAM Abutments perform in accordance with their intended use and are substantially equivalent to predicate devices.

    Acceptance Criterion (Implicit)Reported Device Performance
    Mechanical Fatigue Strength (per ISO 14801 & FDA Guidance)"Results of the testing demonstrate that the fully milled, worst-case 30° angled configurations of both the 3.0mm and 3.5mm prosthetic platform abutments and the titanium bases with bonded zirconia superstructure perform in accordance with their intended use." (Implies meeting or exceeding the performance established by the standard and predicate devices for similar angled abutments).
    Implant Compatibility"Compatibility testing was performed on a representative subset of Zimmer® Screw-Vent® and Tapered Screw-Vent® implants... This testing verifies compatibility of BioHorizons Abutments for Zimmer® with all Zimmer® Screw-Vent® and Tapered Screw-Vent® items based on equivalent mating platform geometry." (Implies successful and reliable fit/function with listed implant systems).
    Sterilization Efficacy (for non-sterile devices requiring sterilization by user)"Steam sterilization validation testing was performed new in accordance with AAMI/ANSVISO 17665-1:2006... Test results demonstrate a sterility assurance level (SAL) of 10⁻⁶." (Implies achievement of the industry-standard sterility level after a validated sterilization process).
    Software Validation (for CAD/CAM design parameters)"Software intended use validation testing of the software systems utilized in the manufacture of the CAD/CAM abutments was performed to ensure that the program design limitations prevent the user from milling abutments that do not fulfill the BioHorizons design criteria." (Implies the software correctly enforces design constraints to ensure proper abutment manufacturing).
    Substantial Equivalence (Overall Safety & Effectiveness)"The data presented in this submission demonstrates that the proposed devices are substantially equivalent with respect to performance and intended use. The proposed devices perform as well as the legally marketed predicate devices. Furthermore, the proposed devices do not pose any new or increased risks as compared to the legally marketed predicate devices." (This is the overarching conclusion of the submission, supported by all the aforementioned tests and comparisons).

    Further Details on the Study:

    Given the nature of this 510(k) submission for a dental abutment, it's highly unlikely that components like "test sets," "ground truth experts," "adjudication methods," or "MRMC comparative effectiveness studies" were part of the presented data. These concepts are more typically associated with diagnostic imaging AI/ML devices or clinical trials involving complex human interpretation.

    Therefore, many of the requested items below will be marked as "Not Applicable" or "Not Provided" based on the document's content and the typical scope of device approval for implant components.

    1. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)

      • Sample Size (Test Set): Not explicitly stated for each test, but implied to be sufficient for compliance with the respective standards (e.g., ISO 14801 typically requires 12 samples per group for fatigue testing). The document mentions "worst-case 30° angled configurations" and "representative subset" for compatibility testing.
      • Data Provenance: Not specified, but generally assumed to be internal laboratory testing by the manufacturer or contracted labs. The document does not indicate data from human subjects or clinical sites.
      • Retrospective or Prospective: Not applicable as these are laboratory and validation tests, not clinical studies involving patient data.
    2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)

      • Not Applicable. The "ground truth" for mechanical and sterilization testing is defined by the physical properties measured against engineering standards (e.g., fracture strength, SAL level). For software validation, it's the correct implementation of defined design parameters. No human expert "ground truthing" in the sense of clinical interpretation is relevant here.
    3. Adjudication method (e.g. 2+1, 3+1, none) for the test set

      • None. Adjudication methods are relevant for ambiguous human interpretations, which is not the case for material property or mechanical performance testing.
    4. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

      • No. This is not a diagnostic device involving human readers or AI assistance.
    5. If a standalone (i.e. algorithm only without human-in-the loop performance) was done

      • Not Directly Applicable. While software validation for the CAD/CAM milling process was performed (an "algorithm only" component), this isn't a standalone diagnostic AI. Its "performance" is about correctly enforcing design parameters, not making a diagnosis or prediction. The core device is a physical product, not a software algorithm presented for standalone performance evaluation in a clinical context.
    6. The type of ground truth used (expert consensus, pathology, outcomes data, etc)

      • Engineering Standards / Defined Specifications:
        • For Dynamic Mechanical Fatigue: ISO 14801 standards and BioHorizons' internal performance specifications for expected strength and durability.
        • For Compatibility: Physical fit and function with the specified implant systems.
        • For Sterilization: AAMI/ANSVISO 17665-1:2006, specifically achieving a Sterility Assurance Level (SAL) of 10⁻⁶.
        • For Software: BioHorizons' allowable range of design parameters and criteria.
    7. The sample size for the training set

      • Not Applicable. As a physical medical device submission, there is no "training set" in the context of machine learning algorithms. The design process for the abutments is based on engineering principles and existing product lines, not data training.
    8. How the ground truth for the training set was established

      • Not Applicable. (See above, no training set for this type of device submission).
    Ask a Question

    Ask a specific question about this device

    K Number
    K150203
    Manufacturer
    Date Cleared
    2015-10-23

    (267 days)

    Product Code
    Regulation Number
    872.3630
    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Medentika TiBase CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Medentika PreFace CAD/CAM Abutments are intended for use with dental implants as a support for single or multiple tooth prostheses in the maxilla or mandible of a partially or fully edentulous patient.

    Device Description

    The subject device includes two CAD/CAM abutment designs, the Medentika TiBase and the Medentika PreFace. The TiBase is a two-piece abutment used as a base when fabricating a zirconia superstructure and the PreFace is an abutment used in fabricating a full patient-specific abutment in titanium alloy. Both abutment designs are provided non-sterile and are intended to be sterilized by the clinician. Medentika Preface Abutment is available in diameters 3.0 mm to 7.0 mm. Medentika TiBase Abutment is available in diameters 3.25 mm to 7.0 mm. The specific diameters for each Series coordinate with the compatible implant systems and sizes listed below.

    TiBase is available in two post designs. TiBase Generation 1 has a conically shaped post that is 4.0 mm high and TiBase Generation 2 has a parallel walled post shape that is 5.5 mm high. PreFace is available in one cylinder height of 20 mm. The maximum angle for abutments fabricated using TiBase or PreFace is 30°, the maximum gingival height is 6 mm and the minimum post height is 4 mm.

    Medentika CAD/CAM Abutments are compatible with eleven dental implant systems. Each Medentika abutment series has a precision implant/abutment interface corresponding to the implant system predicate for that series.

    AI/ML Overview

    The provided document is a 510(k) premarket notification for Medentika CAD/CAM Abutments, asserting substantial equivalence to legally marketed predicate devices. It does not describe a study involving an AI/ML powered device, nor does it detail acceptance criteria related to such a device's performance. Instead, it focuses on non-clinical testing to demonstrate safety and effectiveness for a dental abutment. Therefore, I cannot extract the requested information regarding acceptance criteria, study design for AI/ML performance, ground truth establishment, or human-in-the-loop studies from this document.

    The "Performance Data" section (Page 6/7) explicitly states the types of non-clinical testing conducted:

    • Engineering analysis and dimensional analysis: To determine compatibility with original manufacturers' components.
    • Static and dynamic compression-bending testing: According to ISO 14801 (Dentistry – Implants – Dynamic fatigue test for endosseous dental implants).
    • Sterilization testing: According to ISO 17665-1 and ISO 17665-2 to demonstrate an SAL of 10^-6.
    • Biocompatibility testing: For cytotoxicity according to ISO 10993-5.

    The acceptance criteria would be the successful completion of these tests in accordance with the specified ISO standards and demonstrating compatibility and performance comparable to the predicate devices. However, the document does not list the quantitative acceptance criteria or the specific numerical results obtained for each test (e.g., specific fatigue life, or precise dimensional tolerances met).

    In summary, the document does not contain the information required to answer the prompt as it pertains to AI/ML device performance. The device is a physical medical device (dental abutments), and the review is for substantial equivalence based on physical and mechanical properties, not an AI/ML algorithm.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1