Search Results
Found 2 results
510(k) Data Aggregation
(29 days)
The IlluminOss Photodynamic Bone Stabilization System is indicated for use in skeletally mature patients in the treatment of traumatic, fragility, pathological, and impending pathological fractures of the humerus, radius, ulna, clavicle, pelvis, fibula, metacarpals, and phalanges. The IlluminOss Photodynamic Bone Stabilization System can also be used in conjunction with FDAcleared fracture fixation systems to provide supplemental fixation in these anatomic sites. The IlluminOss System may be used in the femur and tibia to provide supplemental fixation to an anatomically appropriate FDA-cleared fracture fixation system.
The IlluminOss Photodynamic Bone Stabilization System provides an important treatment option in the fixation and stabilization of fractures through a minimally invasive procedure. The system uses a catheter to deploy an inflatable, noncompliant, thin wall PET balloon into the medullary canal of the bone across the fracture site. The balloon is infused using a syringe with a photodynamic (light cured) monomer that causes the balloon to slowly expand and fill the intramedullary canal of the fractured bone. Activation of the light system allows for visible spectrum light to be delivered through a radially emitting light fiber that is temporarily positioned into a central lumen of the catheter that runs the length of the balloon. With this design, the liquid monomer within the balloon is exposed to light along the entire length of the balloon during the curing process. The system is currently indicated for use in the humerus, radius, ulna, clavicle, metacarpal, metatarsal, phalanges, ulna, fibula, and anterior ring of the pelvis. The purpose of this Special 510(k) is to expand the indications of the IlluminOss Photodynamic Bone Stabilization System (PBSS) to include use in the femur and tibia in conjunction with FDA-cleared fracture fixation systems.
The provided text describes the IlluminOss Photodynamic Bone Stabilization System (PBSS) and its expanded indications for use. However, it does not contain the specific details about acceptance criteria, a comparative study with a test set, ground truth establishment, or human reader performance that would typically be found in a detailed study report.
Based on the information provided in the 510(k) summary:
-
A table of acceptance criteria and the reported device performance
Acceptance Criteria Reported Device Performance Improves pull-out strength Device demonstrated statistically significantly higher screw pull-out loads compared to when the IlluminOss device is not used. -
Sample size used for the test set and the data provenance (e.g., country of origin of the data, retrospective or prospective)
The document does not specify the sample size for the test set or data provenance (country of origin, retrospective/prospective). It generally refers to "samples" being tested. -
Number of experts used to establish the ground truth for the test set and the qualifications of those experts
This information is not provided in the document. -
Adjudication method (e.g., 2+1, 3+1, none) for the test set
This information is not provided in the document. -
If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
A multi-reader multi-case (MRMC) comparative effectiveness study was not conducted, as this device is a physical medical device (bone stabilization system), not an AI algorithm for diagnostic imaging. -
If a standalone (i.e., algorithm only without human-in-the-loop performance) was done
This question is not applicable as the device is a physical bone stabilization system, not an algorithm. However, performance testing of the device itself (standalone) was conducted, focusing on its mechanical properties. -
The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" in this context is likely derived from mechanical testing data (e.g., direct measurements of pull-out strength in a laboratory setting) rather than clinical expert consensus or pathology, as the study focuses on the device's mechanical performance in supplemental fixation. -
The sample size for the training set
This information is not provided. It's important to note that for a physical device undergoing mechanical testing, the concept of a "training set" as understood in machine learning is generally not applicable. Instead, there would be samples used for initial design verification and validation testing. -
How the ground truth for the training set was established
Not applicable, as a "training set" in the machine learning sense is not relevant here. For the mechanical testing performed, the "ground truth" (i.e., the actual pull-out strength for a given construct) would have been established through direct experimental measurement in a controlled laboratory environment.
Ask a specific question about this device
(264 days)
NET Brand Small Fragment and Large Fragment Osteosynthesis System is intended for small and large bone fracture fixation, arthrodesis and osteotomy fixation. Examples include: fractures of the clavicle, scapula, humerus, olecranon, radius, ulna, distal femur, proximal tibial pilon, fibula, pelvis and acetabulum fractures; periprosthetic fractures; The use of locking plate/screw systems is suited for treatment of fractures in osteopenic bone. This system is not indicated for use in the spine.
NET Brand DHS/DCS plating system may be used for fixation of the fractures of proximal femur such as femoral neck, trochanteric, pertrochanteric or intertrochanteric zones.
NET Brand Small Fragment and Large Fragment Osteosynthesis Plating System consists of plates and screws in a variety of designs and sizes and made from Ti-6Al-4V alloy or stainless steel. Plates are provided in straight designs and in various geometric configurations that are commonly used in trauma and reconstructive surgery. Plates are provided with screw holes to accommodate non-locking and locking screws designs. Screws are provided in, 3.5mm Cortex Self-tapping, 4.5 mm Cortex self-tapping and 2.7mm self-tapping cortex locking, 3.5mm selftapping Cortex Locking, 5.0 mm cortex Locking thread designs in various lengths. This system is not indicated for use in spine.
NET Brand of DHS/DCS Plating System made from Ti-6Al-4V alloy or stainless steel and consist of DHS/DCS Plates, lag Screw, compression screw, and 4.5 Cortex screw Self Tapping, The DHS plates are available with barrel length 25mm (short barrel) and 38mm (Standard barrel) and barrel angels varies in 130° to 150°. The DCS plate is having angle of 95°
The DHS/DCS Screw is available in total length from 50 to 145 mm, thread length 22mm, shaft diameter 7 mm and outer diameter of 12.5. The thread of DHS/DCS Screw has a buttress type.
The DHS/DCS Compression Screw can be used to achieve fracture compression. Its dimension is available with thread length 36mm and outer diameter 4.0 mm.
The provided document is a 510(k) Premarket Notification for the "NET Brand Small Fragment and Large Fragment Osteosynthesis Plating System, NET Brand of DHS/DCS Plating System." This document aims to demonstrate substantial equivalence to legally marketed predicate devices, not to establish new performance criteria through a standalone study with acceptance criteria.
Therefore, the document does not contain the requested information about acceptance criteria and a study proving the device meets those criteria, as it is not a performance study in that sense.
Instead, the document focuses on demonstrating substantial equivalence to predicate devices. This is achieved by comparing the new device's technological characteristics, intended use, materials, and performance (via testing against established ASTM standards) to those of already approved predicate devices.
Here's an explanation based on the provided text, addressing the points where information is available or noting its absence:
1. Table of Acceptance Criteria and Reported Device Performance:
The document does not define specific "acceptance criteria" for clinical performance in terms of sensitivity, specificity, accuracy, or similar metrics for a new diagnostic or prognostic device. Instead, it demonstrates compliance with recognized engineering and material standards to show that the device performs equivalently to previously approved devices.
The "reported device performance" is essentially a confirmation of conformance to established ASTM standards for bone plates and screws.
Characteristic | Acceptance Criteria (Standard Compliance) | Reported Device Performance |
---|---|---|
Material | ASTM F 136, ASTM F 138, ASTM F 139 | Conforms |
Bone Plates (Static) | ASTM F 382, ASTM F 384 (Static Four Point Bend Test) | Conforms |
Bone Plates (Dynamic) | ASTM F 382, ASTM F 384 (Dynamic Four Point Bend Test) | Conforms |
Bone Screws (Torsional) | ASTM F 543 (Torsional Properties) | Conforms |
Bone Screws (Driving) | ASTM F 543 (Driving Torque) | Conforms |
Bone Screws (Pull-out) | ASTM F 543 (Pull-out Test) | Conforms |
2. Sample size used for the test set and the data provenance:
- Sample Size: The document does not specify a "sample size" in terms of patient cases or images, as it is a mechanical device submission. The testing involves mechanical specimens (e.g., plates and screws) tested according to the cited ASTM standards. The specific number of specimens tested for each standard is not detailed in this summary.
- Data Provenance: Not applicable as it's not a clinical or imaging study. The tests are mechanical and presumably conducted in a laboratory setting.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
Not applicable. This is a submission for a bone fixation device, not a diagnostic device requiring expert interpretation for ground truth establishment. Mechanical testing relies on standardized methodologies, not expert consensus on clinical cases.
4. Adjudication method for the test set:
Not applicable for a mechanical device submission.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
Not applicable. This is a medical device for bone fixation, not an AI or diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:
Not applicable. This is a medical device for bone fixation, not an algorithm.
7. The type of ground truth used:
The "ground truth" in this context is the established performance benchmarks defined by recognized industry standards (ASTM F382, ASTM F384, ASTM F543 for performance, and ASTM F136, ASTM F138, ASTM F139 for materials). The device is deemed acceptable if it conforms to these standards, indicating mechanical properties are comparable to legally marketed devices.
8. The sample size for the training set:
Not applicable. This is a mechanical device, not a machine learning model requiring a training set.
9. How the ground truth for the training set was established:
Not applicable, as there is no training set for this type of device submission. The "ground truth" for demonstrating substantial equivalence rests on adherence to material and performance standards, which are developed and accepted by the scientific and engineering community.
Ask a specific question about this device
Page 1 of 1