Search Results
Found 3 results
510(k) Data Aggregation
(90 days)
The 2.4mm Secure Locking Variable Angle Distal Radius Plate and Ø2.4 mm Secure Locking Screws, Self-Tapping are intended for fixation of complex intra- and extra-articular fractures arid osteotomies of the distal radius.
The 2.7mm/3.5mm Secure Locking Distal Humerus Medial Plate, 2.7mm/3.5mm Secure Locking Distal Humerus, Dorsolateral Plate, and 2.7mm/3.5mm Secure Locking Distal Humerus Plate, Dorsolateral With Lateral Support are indicated for intra-articular fractures of the distal humerus, comminuted supracondylar fractures, and nonunions of the distal humerus.
The 3.5mm Secure Locking Small Plate, 3.5mm Secure Locking T-Plate, Small with 3 Head Holes, and Ø3.5 mm Secure Locking Screws, Self-Tapping, are indicated for fixation of fractures, and non-unions of the clavicle, scapula, olecranon, humerus, radius, ulna, pelvis, distal tibia, fibula.
The 3.5 mm Secure Locking Superior-Anterior Clavicle Plate and 3.5 mm Secure Locking Superior-Anterior Clavice Plate With Lateral Extension is indicated for fixation of fractures, malunions, and ostectornies of the clavice in adults, and in both adolescents (12-18 years) and transitional adolescents (18-21 years), in which the clavicular growth plates have fused or in which the growth plates will not be crossed by the plate system.
The 3.5mm Secure Locking Olecranon Plate is indicated for fractures, osteotomies, malunions and non-unions of the olecranon.
The 3.5 mm Secure Locking Philos Proximal Humeral Internal Plate is indicated for fractures and fracture dislocations, osteotomies, and non-unions of the proximal humerus.
The 4.5/5.0mm Secure Locking Narrow LC Dynamic Compression Plate is indicated for fixation of various long bones, such as the humerus, femur and tibia and for use in fixation of peri-prosthetic fractures, and fixation of nonunions or malunions in adult patients.
The 4.5mm/5.0mm Secure Locking Distal Femoral Plate is intended for buttressing multifragmentary distal femur fractures including: supracondylar, intra-articular condylar, periprosthetic fractures, nonunions and malunions, and osteotomies of the femur.
The 4.5mm/5.0mm Secure Locking Medial Proximal Tibia Plate is intended to buttress metaphyseal fractures of the medial tibia plateau, split-type fractures of the medial split fractures with associated depressions and split or depression fractures of the medial tibia plateau. Also, for use in the fixation of nonunions of the medial proximal tibia and tibia shaft.
The 4.5mm/5.0mm Secure Locking L Buttress Plate and 4.5mm/5.0mm Secure Locking T Buttress Plate are intended to buttress metaphyseal fractures of the proximal humerus, medial tibial tibia. Also, for use in fixation of non-unions and malunions.
The 3.5mm/4.5mm/5.0mm Secure Locking Distal Tibia Plates are intended treatment of non-unions, and fractures of the distal tibia, including simple, comminuted, lateral wedge, depression, medial wedge, bicondylar, combinations of lateral wedge and depression, and fractures with associated shaft fractures.
The Ø3.5mm CORTICAL SCREW and Ø4.5mm CORTICAL SCREW are intended for fixation of fractures, osteotomies and non-unions of the clavicle, scapula, olecranon, humerus, radius, ulna, pelvis, tibia, calcaneous, femur and fibula in adults and in both children (2-12 years) and adolescents (12-21 years) in which growth plates have fused or in which growth plates will not be crossed by screw fixation.
The Ø2.7 mm Secure Locking Screws, Self Tapping, and Ø 2.7mm Cortical Screws are intended for fractures and osteotomies of small bone fragments, including the foot, ankle, and hand in adults and in both children (2-12 years) and adolescents (12-21 years) in which growth plates have fused or in which growth plates will not be crossed by screw fixation.
The Ø5.0mm Secure Locking Screws, Self-Tapping are intended for fixation of various long bones, such as the humerus, femur and tibia. It is also for use in fixation of non-unions or malunions.
The 6.5mm Cancellous Screw, 16mm Thread, 32 Thread, Ø4.0mm CANCELLOUS SCREW, Partial Thread, Full Thread, and Ø4.0mm SMALL CANCELLOUS CANNULATED SCREW, Partial Thread, Full Thread are indicated for use in hindfoot and midfoot fusions, subtalar fusions, calcaneal osteotomies, midfoot reconstruction, and ankle arthrodeses.
The 6.5mm Cancellous Cannulated Screw, 16mm Thread, 32 Thread, Full Thread, and 7.0mm Cancellous Cannulated Screw, 16mm Thread, 32 Thread, are indicated for fracture fixation of large bone fragments, such as tibial plateau fractures, ankle arthrodeses, intercondylar femur fractures; and subtalar arthrodeses.
HEMC BRAND Locking Bone Plates and Screws Osteosynthesis Plating System consists of various shapes and sizes of plates featuring compression and locking holes, full-threaded-cortical, locking selftapping screws, compression and dynamic screws. The subject device system also consists of a variety of general use instruments (Class I), which include drill bits, forceps, plate benders, and drill guides.
The plates and screws are manufactured from Stainless Steel and Titanium alloy.
The system contains several models based on the size of the device and application site such as fixation/reconstruction of small fragment bones, forefoot, mid-foot, rear-foot, ankle, or other bones appropriate for the size of the device. The plate implants are in many models available, such as:, Reconstruction Plates, T-Plates, Anatomical Plates, Clavicle Plates.
These all are mainly divided into:
- . Large Fragment Plates
- Small Fragment Plates ●
- Mini Fragment Plates .
The locking screw implants are offered in corresponding diameter ranges from 2.4mm, 2.7mm, 3.5mm, 5.0mm diameters with lengths varying from a minimum length of 6 mm to maximum length of 90mm.
The non-locking screw implants are offered in 2.7mm, 3.5mm and 4.5mm diameters, with lengths ranqing from 10mm to 80mm.
The cancellous screw implants are 4.0mm and 6.5mm in diameter, with lengths ranging from 10 to 120 mm. The cancellous cannulated screw implants are offered in 4.0mm. 6.5mm and 7.0mm diameters and lengths ranging from 16mm to 130 mm.
HEMC BRAND Locking Bone Plates and Screws Osteosynthesis Plating System are provided non-sterile, the products must be sterilized prior to use. All implants are for single use only.
This document describes the 510(k) summary for the HEMC BRAND Locking Bone Plates and Screws Osteosynthesis Plating System. However, it does not contain information about acceptance criteria or a study proving the device meets those criteria in the context of an AI/ML device.
The information provided pertains to the substantial equivalence of a medical implant (bone plates and screws) to predicate devices, focusing on material, design, and mechanical performance rather than AI/ML algorithm performance.
Therefore, I cannot extract the requested information regarding acceptance criteria, study details, sample sizes, expert qualifications, adjudication methods, MRMC studies, standalone performance, or ground truth for an AI/ML device from the given text.
The document discusses the following:
- Device Name: HEMC BRAND Locking Bone Plates and Screws Osteosynthesis Plating System
- Intended Use: Fixation of various bone fractures and osteotomies.
- Predicate Devices: A list of Synthes Locking Compression Plate Systems and Screws.
- Non-Clinical Testing:
- Material Standards: ASTM F136, ASTM F138, ASTM F139 (for Stainless Steel and Titanium alloy).
- Performance Standards: ASTM F382 (Metallic Bone Plates), ASTM F384 (Metallic Angled Orthopedic Fracture Fixation Devices), ASTM F543 (Metallic Medical Bone Screws), and FDA guidance documents for orthopedic screws and fracture fixation plates.
- Performance Results: Conforms to Static Four Point Bend Test, Dynamic Four Point Bend Test (for plates), Torsional Properties, Driving Torque, and Pull-out Test (for screws).
- Clinical Evaluation: Not necessary to demonstrate substantial equivalence, as the device is similar in design, pattern, and intended use to predicate devices.
In summary, the provided text does not describe an AI/ML device or its performance evaluation. It details the regulatory clearance process for a traditional medical implant based on substantial equivalence.
Ask a specific question about this device
(29 days)
The IlluminOss Photodynamic Bone Stabilization System is indicated for use in skeletally mature patients in the treatment of traumatic, fragility, pathological, and impending pathological fractures of the humerus, radius, ulna, clavicle, pelvis, fibula, metacarpals, and phalanges. The IlluminOss Photodynamic Bone Stabilization System can also be used in conjunction with FDAcleared fracture fixation systems to provide supplemental fixation in these anatomic sites. The IlluminOss System may be used in the femur and tibia to provide supplemental fixation to an anatomically appropriate FDA-cleared fracture fixation system.
The IlluminOss Photodynamic Bone Stabilization System provides an important treatment option in the fixation and stabilization of fractures through a minimally invasive procedure. The system uses a catheter to deploy an inflatable, noncompliant, thin wall PET balloon into the medullary canal of the bone across the fracture site. The balloon is infused using a syringe with a photodynamic (light cured) monomer that causes the balloon to slowly expand and fill the intramedullary canal of the fractured bone. Activation of the light system allows for visible spectrum light to be delivered through a radially emitting light fiber that is temporarily positioned into a central lumen of the catheter that runs the length of the balloon. With this design, the liquid monomer within the balloon is exposed to light along the entire length of the balloon during the curing process. The system is currently indicated for use in the humerus, radius, ulna, clavicle, metacarpal, metatarsal, phalanges, ulna, fibula, and anterior ring of the pelvis. The purpose of this Special 510(k) is to expand the indications of the IlluminOss Photodynamic Bone Stabilization System (PBSS) to include use in the femur and tibia in conjunction with FDA-cleared fracture fixation systems.
The provided text describes the IlluminOss Photodynamic Bone Stabilization System (PBSS) and its expanded indications for use. However, it does not contain the specific details about acceptance criteria, a comparative study with a test set, ground truth establishment, or human reader performance that would typically be found in a detailed study report.
Based on the information provided in the 510(k) summary:
-
A table of acceptance criteria and the reported device performance
Acceptance Criteria Reported Device Performance Improves pull-out strength Device demonstrated statistically significantly higher screw pull-out loads compared to when the IlluminOss device is not used. -
Sample size used for the test set and the data provenance (e.g., country of origin of the data, retrospective or prospective)
The document does not specify the sample size for the test set or data provenance (country of origin, retrospective/prospective). It generally refers to "samples" being tested. -
Number of experts used to establish the ground truth for the test set and the qualifications of those experts
This information is not provided in the document. -
Adjudication method (e.g., 2+1, 3+1, none) for the test set
This information is not provided in the document. -
If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
A multi-reader multi-case (MRMC) comparative effectiveness study was not conducted, as this device is a physical medical device (bone stabilization system), not an AI algorithm for diagnostic imaging. -
If a standalone (i.e., algorithm only without human-in-the-loop performance) was done
This question is not applicable as the device is a physical bone stabilization system, not an algorithm. However, performance testing of the device itself (standalone) was conducted, focusing on its mechanical properties. -
The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" in this context is likely derived from mechanical testing data (e.g., direct measurements of pull-out strength in a laboratory setting) rather than clinical expert consensus or pathology, as the study focuses on the device's mechanical performance in supplemental fixation. -
The sample size for the training set
This information is not provided. It's important to note that for a physical device undergoing mechanical testing, the concept of a "training set" as understood in machine learning is generally not applicable. Instead, there would be samples used for initial design verification and validation testing. -
How the ground truth for the training set was established
Not applicable, as a "training set" in the machine learning sense is not relevant here. For the mechanical testing performed, the "ground truth" (i.e., the actual pull-out strength for a given construct) would have been established through direct experimental measurement in a controlled laboratory environment.
Ask a specific question about this device
(264 days)
NET Brand Small Fragment and Large Fragment Osteosynthesis System is intended for small and large bone fracture fixation, arthrodesis and osteotomy fixation. Examples include: fractures of the clavicle, scapula, humerus, olecranon, radius, ulna, distal femur, proximal tibial pilon, fibula, pelvis and acetabulum fractures; periprosthetic fractures; The use of locking plate/screw systems is suited for treatment of fractures in osteopenic bone. This system is not indicated for use in the spine.
NET Brand DHS/DCS plating system may be used for fixation of the fractures of proximal femur such as femoral neck, trochanteric, pertrochanteric or intertrochanteric zones.
NET Brand Small Fragment and Large Fragment Osteosynthesis Plating System consists of plates and screws in a variety of designs and sizes and made from Ti-6Al-4V alloy or stainless steel. Plates are provided in straight designs and in various geometric configurations that are commonly used in trauma and reconstructive surgery. Plates are provided with screw holes to accommodate non-locking and locking screws designs. Screws are provided in, 3.5mm Cortex Self-tapping, 4.5 mm Cortex self-tapping and 2.7mm self-tapping cortex locking, 3.5mm selftapping Cortex Locking, 5.0 mm cortex Locking thread designs in various lengths. This system is not indicated for use in spine.
NET Brand of DHS/DCS Plating System made from Ti-6Al-4V alloy or stainless steel and consist of DHS/DCS Plates, lag Screw, compression screw, and 4.5 Cortex screw Self Tapping, The DHS plates are available with barrel length 25mm (short barrel) and 38mm (Standard barrel) and barrel angels varies in 130° to 150°. The DCS plate is having angle of 95°
The DHS/DCS Screw is available in total length from 50 to 145 mm, thread length 22mm, shaft diameter 7 mm and outer diameter of 12.5. The thread of DHS/DCS Screw has a buttress type.
The DHS/DCS Compression Screw can be used to achieve fracture compression. Its dimension is available with thread length 36mm and outer diameter 4.0 mm.
The provided document is a 510(k) Premarket Notification for the "NET Brand Small Fragment and Large Fragment Osteosynthesis Plating System, NET Brand of DHS/DCS Plating System." This document aims to demonstrate substantial equivalence to legally marketed predicate devices, not to establish new performance criteria through a standalone study with acceptance criteria.
Therefore, the document does not contain the requested information about acceptance criteria and a study proving the device meets those criteria, as it is not a performance study in that sense.
Instead, the document focuses on demonstrating substantial equivalence to predicate devices. This is achieved by comparing the new device's technological characteristics, intended use, materials, and performance (via testing against established ASTM standards) to those of already approved predicate devices.
Here's an explanation based on the provided text, addressing the points where information is available or noting its absence:
1. Table of Acceptance Criteria and Reported Device Performance:
The document does not define specific "acceptance criteria" for clinical performance in terms of sensitivity, specificity, accuracy, or similar metrics for a new diagnostic or prognostic device. Instead, it demonstrates compliance with recognized engineering and material standards to show that the device performs equivalently to previously approved devices.
The "reported device performance" is essentially a confirmation of conformance to established ASTM standards for bone plates and screws.
Characteristic | Acceptance Criteria (Standard Compliance) | Reported Device Performance |
---|---|---|
Material | ASTM F 136, ASTM F 138, ASTM F 139 | Conforms |
Bone Plates (Static) | ASTM F 382, ASTM F 384 (Static Four Point Bend Test) | Conforms |
Bone Plates (Dynamic) | ASTM F 382, ASTM F 384 (Dynamic Four Point Bend Test) | Conforms |
Bone Screws (Torsional) | ASTM F 543 (Torsional Properties) | Conforms |
Bone Screws (Driving) | ASTM F 543 (Driving Torque) | Conforms |
Bone Screws (Pull-out) | ASTM F 543 (Pull-out Test) | Conforms |
2. Sample size used for the test set and the data provenance:
- Sample Size: The document does not specify a "sample size" in terms of patient cases or images, as it is a mechanical device submission. The testing involves mechanical specimens (e.g., plates and screws) tested according to the cited ASTM standards. The specific number of specimens tested for each standard is not detailed in this summary.
- Data Provenance: Not applicable as it's not a clinical or imaging study. The tests are mechanical and presumably conducted in a laboratory setting.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
Not applicable. This is a submission for a bone fixation device, not a diagnostic device requiring expert interpretation for ground truth establishment. Mechanical testing relies on standardized methodologies, not expert consensus on clinical cases.
4. Adjudication method for the test set:
Not applicable for a mechanical device submission.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
Not applicable. This is a medical device for bone fixation, not an AI or diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:
Not applicable. This is a medical device for bone fixation, not an algorithm.
7. The type of ground truth used:
The "ground truth" in this context is the established performance benchmarks defined by recognized industry standards (ASTM F382, ASTM F384, ASTM F543 for performance, and ASTM F136, ASTM F138, ASTM F139 for materials). The device is deemed acceptable if it conforms to these standards, indicating mechanical properties are comparable to legally marketed devices.
8. The sample size for the training set:
Not applicable. This is a mechanical device, not a machine learning model requiring a training set.
9. How the ground truth for the training set was established:
Not applicable, as there is no training set for this type of device submission. The "ground truth" for demonstrating substantial equivalence rests on adherence to material and performance standards, which are developed and accepted by the scientific and engineering community.
Ask a specific question about this device
Page 1 of 1