Search Results
Found 149 results
510(k) Data Aggregation
(315 days)
. §870.1100 alarm, blood-pressure
21 C.F.R. §870.1425 Programmable diagnostic computer.
21 C.F.R.
The monitor B105M, B125M, B155M, B105P and B125P are portable multi-parameter patient monitors intended to be used for monitoring, recording, and to generate alarms for multiple physiological parameters of adult, pediatric, and neonatal patients in a hospital environment and during intra-hospital transport.
The monitor B105M, B125M, B155M, B105P and B125P are intended for use under the direct supervision of a licensed health care practitioner.
The monitor B105M, B125M, B155M, B105P and B125P are not Apnea monitors (i.e., do not rely on the device for detection or alarm for the cessation of breathing). These devices should not be used for life sustaining/supporting purposes.
The monitor B105M, B125M, B155M, B105P and B125P are not intended for use during MRI.
The monitor B105M, B125M, B155M, B105P and B125P can be stand-alone monitors or interfaced to other devices via network.
The monitor B105M, B125M, B155M, B105P and B125P monitor and display: ECG (including ST segment, arrhythmia detection, ECG diagnostic analysis and measurement), invasive blood pressure, heart/pulse rate, oscillometric non-invasive blood pressure (systolic, diastolic and mean arterial pressure), functional oxygen saturation (SpO2) and pulse rate via continuous monitoring (including monitoring during conditions of clinical patient motion or low perfusion), temperature with a reusable or disposable electronic thermometer for continual monitoring Esophageal/Nasopharyngeal/Tympanic/Rectal/Bladder/Axillary/Skin/Airway/Room/Myocardial/Core/Surface temperature, impedance respiration, respiration rate, airway gases (CO2, O2, N2O, anesthetic agents, anesthetic agent identification and respiratory rate), Cardiac Output (C.O.), Entropy, neuromuscular transmission (NMT) and Bispectral Index (BIS).
The monitor B105M, B125M, B155M, B105P and B125P are able to detect and generate alarms for ECG arrhythmias: Asystole, Ventricular tachycardia, VT>2, Ventricular Bradycardia, Accelerated Ventricular Rhythm, Ventricular Couplet, Bigeminy, Trigeminy, "R on T", Tachycardia, Bradycardia, Pause, Atrial Fibrillation, Irregular, Multifocal PVCs, Missing Beat, SV Tachy, Premature Ventricular Contraction (PVC), Supra Ventricular Contraction (SVC) and Ventricular fibrillation.
The proposed monitors B105M, B125M, B155M, B105P and B125P are new version of multi-parameter patient monitors developed based on the predicate monitors B105M, B125M, B155M, B105P and B125P (K213490) to provide additional monitored parameter Bispectral Index (BIS) by supporting the additional optional E-BIS module (K052145) which used in conjunction with Covidien BISx module (K072286).
In addition to the added parameter, the proposed monitors also offer below several enhancements:
- Provided data connection with GE HealthCare anesthesia devices to display the parameters measured from anesthesia devices (Applicable for B105M, B125M and B155M).
- Modified Early Warning Score calculation provided.
- Separated low priority alarms user configurable settings from the combined High/Medium/Low priority options.
- Provided additional customized notification tool to allow clinician to configure the specific notification condition of one or more physiological parameters measured by the monitor. (Applicable for B105M, B125M and B155M).
- Enhanced User Interface in Neuromuscular Transmission (NMT), Respiration Rate and alarm overview.
- Provided Venous Stasis to assist venous catheterization with NIBP cuff inflation.
- Supported alarm light brightness adjustment.
- Supported alarm audio pause by gesture (Not applicable for B105M and B105P).
- Supported automatic screen brightness adjustment.
- Supported network laser printing.
- Continuous improvements in cybersecurity
The proposed monitors B105M, B125M, B155M, B105P and B125P retain equivalent hardware design based on the predicate monitors and removal of the device Trim-knob to better support cleaning and disinfecting while maintaining the same primary function and operation.
Same as the predicate device, the five models (B105M, B125M, B155M, B105P and B125P) share the same hardware platform and software platform to support the data acquisition and algorithm modules. The differences between them are the LCD screen size and configuration options. There is no change from the predicate in the display size.
As with the predicate monitors B105M, B125M, B155M, B105P and B125P (K213490), the proposed monitors B105M, B125M, B155M, B105P and B125P are multi-parameter patient monitors, utilizing an LCD display and pre-configuration basic parameters: ECG, RESP, NIBP, IBP, TEMP, SpO2, and optional parameters which include CO2 and Gas parameters provided by the E-MiniC module (K052582), CARESCAPE Respiratory modules E-sCO and E-sCAiO (K171028), Airway Gas Option module N-CAiO (K151063), Entropy parameter provided by the E-Entropy module (K150298), Cardiac Output parameter provided by the E-COP module (K052976), Neuromuscular Transmission (NMT) parameter provided by E-NMT module (K051635) and thermal recorder B1X5-REC.
The proposed monitors B105M, B125M, B155M, B105P and B125P are not Apnea monitors (i.e., do not rely on the device for detection or alarm for the cessation of breathing). These devices should not be used for life sustaining/supporting purposes. Do not attempt to use these devices to detect sleep apnea.
As with the predicate monitors B105M, B125M, B155M, B105P and B125P (K213490), the proposed monitors B105M, B125M, B155M, B105P and B125P also can interface with a variety of existing central station systems via a cabled or wireless network which implemented with identical integrated WiFi module. (WiFi feature is disabled in B125P/B105P).
Moreover, same as the predicate monitors B105M, B125M, B155M, B105P and B125P (K213490), the proposed monitors B105M, B125M, B155M, B105P and B125P include features and subsystems that are optional or configurable, and it can be mounted in a variety of ways (e.g., shelf, countertop, table, wall, pole, or head/foot board) using existing mounting accessories.
The provided FDA 510(k) clearance letter and summary for K242562 (Monitor B105M, Monitor B125M, Monitor B155M, Monitor B105P, Monitor B125P) do not contain information about specific acceptance criteria, reported device performance metrics, or details of a study meeting those criteria for any of the listed physiological parameters or functionalities (e.g., ECG or arrhythmia detection).
Instead, the documentation primarily focuses on demonstrating substantial equivalence to a predicate device (K213490) by comparing features, technology, and compliance with various recognized standards and guidance documents for safety, EMC, software, human factors, and cybersecurity.
The summary explicitly states: "The subject of this premarket submission, the proposed monitors B105M/B125M/B155M/B105P/B125P did not require clinical studies to support substantial equivalence." This implies that the changes introduced in the new device versions were not considered significant enough to warrant new clinical performance studies or specific quantitative efficacy/accuracy acceptance criteria beyond what is covered by the referenced consensus standards.
Therefore, I cannot provide the requested information from the given text:
- A table of acceptance criteria and the reported device performance: This information is not present. The document lists numerous standards and tests performed, but not specific performance metrics or acceptance thresholds.
- Sample size used for the test set and the data provenance: Not explicitly stated for performance evaluation, as clinical studies were not required. The usability testing mentioned a sample size of 16 US clinical users, but this is for human factors, not device performance.
- Number of experts used to establish the ground truth for the test set and the qualifications of those experts: Not applicable, as detailed performance studies requiring expert ground truth are not described.
- Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable.
- If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable. This device is a patient monitor, not an AI-assisted diagnostic tool that would typically involve human readers.
- If a standalone (i.e. algorithm only without human-in-the loop performance) was done: The document describes "Bench testing related to software, hardware and performance including applicable consensus standards," which implies standalone testing against known specifications or simulated data. However, specific results or detailed methodologies for this type of testing are not provided beyond the list of standards.
- The type of ground truth used (expert consensus, pathology, outcomes data, etc.): Not explicitly stated for performance assessment. For the various parameters (ECG, NIBP, SpO2, etc.), it would typically involve reference equipment or validated methods as per the relevant IEC/ISO standards mentioned.
- The sample size for the training set: Not applicable, as this is not an AI/ML device that would require explicit training data in the context of this submission.
- How the ground truth for the training set was established: Not applicable.
In summary, the provided document focuses on demonstrating that the new monitors are substantially equivalent to their predicate through feature comparison, adherence to recognized standards, and various non-clinical bench tests (e.g., hardware, alarms, EMC, environmental, reprocessing, human factors, software, cybersecurity). It does not contain the detailed performance study results and acceptance criteria typically found for novel diagnostic algorithms or AI-driven devices.
Ask a specific question about this device
(78 days)
BZQ
- 21 CFR 870.2700/DQA
- 21 CFR 870.2340/DPS
- 21 CFR 870.2710/DPZ
- 21 CFR 870.2300/DRT
- 21 CFR 870.1100
CFR 870.2700/ DQA
21 CFR 870.2340/ DPS
21 CFR 870.2710/ DPZ
21 CFR 870.2300/ DRT
21 CFR 870.1100
CFR 870.2700/ DQA
21 CFR 870.2340/ DPS
21 CFR 870.2710/ DPZ
21 CFR 870.2300/ DRT
21 CFR 870.1100
The Radius VSM and accessories are intended to be used as both a wearable multi-parameter patient monitor and an accessory to a multi-parameter patient monitor that is intended for multi-parameter physiological patient monitoring in hospital and healthcare facilities.
The Radius VSM and accessories are indicated for the monitoring of hemodynamic (including ECG, arrhythmia detection, non-invasive blood pressure, SpO2, Pulse Rate, PVi, heart rate, and temperature), and respiratory (e.g., impedance, acoustic, and pleth-based respiration rate) physiological parameters along with the orientation and activity of adults.
The Radius VSM and accessories are indicated for the non-invasive continuous monitoring of functional oxygen saturation of arterial hemoglobin (SpO2) and Pulse Rate (PR) of well or poorly perfused adults during both no motion and motion conditions.
The Radius VSM and accessories are indicated for continuous monitoring of skin temperature of adults.
The Radius VSM and accessories are indicated for monitoring of the orientation and activity of patients including those susceptible to pressure ulcers.
The Radius VSM and accessories are indicated for the continuous non-invasive monitoring of PVi as a measure of relative variability of the photoplethysmograph (pleth) of adults during no motion conditions. PVi may be used as a noninvasive dynamic indicator of fluid responsiveness in select populations of mechanically ventilated adult patients. Accuracy of PVi in predicting fluid responsiveness is variable and influenced by numerous patient, procedure and device related factors. PVi measures the variation in the plethysmography amplitude but does not provide measurements of stroke volume or cardiac output. Fluid management decisions should be based on a complete assessment of the patient's condition and should not be based solely on PVi.
Devices with Masimo technology are only indicated for use with Masimo accessories.
Radius VSM Accessories:
Radius VSM ECG Electrodes are disposable, single-patient use ECG electrodes intended to acquire ECG signals from the surface of the body. They are indicated for use on adults for up to 3 days of skin surface contact.
Radius VSM Blood Pressure Cuffs are accessories intended to be used with a noninvasive blood pressure measurement system to measure blood pressure. They are indicated for use on adults during no motion conditions.
The Radius VSM and accessories are an FDA cleared (K223498), wearable, battery-operated, multi-modular patient monitoring platform that allows for the ability to scale and tailor the use of different monitoring technologies based upon the hospital and clinician's assessment of what technologies are appropriate.
As part of this submission, a MAP feature is being added to the Radius VSM. The feature is a software feature that uses the previously cleared systolic and diastolic measurement capabilities to automate the calculation of MAP using the following formula: MAP = 1/3* Systolic + 2/3*Diastolic.
The MAP is calculated by the Radius VSM NIBP Module and displayed on the Radius VSM Wearable Monitor. There were no other features added as part of this submission.
The provided 510(k) clearance letter and summary discuss the addition of a Mean Arterial Pressure (MAP) feature to the previously cleared Radius VSM and Accessories device. The primary focus of the performance data section is on validating this new MAP feature.
Here's an analysis of the acceptance criteria and the study proving the device meets them, based on the provided document:
Acceptance Criteria and Reported Device Performance
The document states that the acceptance criterion for Blood Pressure (including MAP) is:
"Meets ISO 81060-2 (Mean difference of ≤5 mmHg with a standard deviation of ≤8 mmHg)"
The document directly states that the results of the clinical testing supported the clinical performance of the MAP in accordance with ISO 81060-2. While specific numerical results (e.g., the exact mean difference and standard deviation achieved) are not explicitly provided in the summary table, the clearance implies that these metrics fell within the specified ISO 81060-2 limits for the MAP feature.
Table 1: Acceptance Criteria and Reported Device Performance for MAP Feature (as inferred from the document)
Feature | Acceptance Criteria | Reported Device Performance |
---|---|---|
Mean Arterial Pressure (MAP) | Meets ISO 81060-2: Mean difference of ≤5 mmHg with a standard deviation of ≤8 mmHg | Performance met ISO 81060-2 (i.e., mean difference and standard deviation were within the specified limits). |
Study Details for MAP Feature Validation
-
Sample Size Used for the Test Set and Data Provenance:
- Sample Size: The document does not explicitly state the numerical sample size (number of subjects/patients) used for the clinical test set. It only mentions "clinical study data."
- Data Provenance: The document does not specify the country of origin. It indicates it was a "clinical study" and implies it was prospective ("clinical testing is provided to support its performance" for the added feature).
-
Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications of those Experts:
- Not applicable as the ground truth was established by an objective reference device, not human experts.
-
Adjudication Method for the Test Set:
- Not applicable, as the method for ground truth establishment was comparison to a reference device.
-
If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done:
- No, an MRMC study was not done. The study was a comparison of the device's calculated MAP to invasively measured MAP from a reference device. This is a technical performance validation, not a study assessing human reader improvement with AI assistance.
-
If a Standalone Performance (i.e., algorithm only without human-in-the-loop performance) was done:
- Yes, this was a standalone performance study. The Radius VSM automatically calculates the MAP based on the NIBP measurements (Systolic and Diastolic Pressure). The clinical testing validated the accuracy of this calculation against a reference standard, without human intervention in the MAP calculation or interpretation for the test itself.
-
The Type of Ground Truth Used:
- Reference Ground Truth: Invasively measured MAP values from a 510(k) cleared reference device (K171801). This reference device is identified as "IntelliVue Multi-Measurement Module X3." This constitutes a device-based reference standard or instrument-based ground truth.
-
The Sample Size for the Training Set:
- The document does not provide information about a training set since the MAP feature appears to be a direct calculation using a standard formula (
MAP = 1/3* Systolic + 2/3*Diastolic
) rather than a machine learning model that requires a training phase. While the device as a whole (Radius VSM) likely had training and validation phases for its other parameters, the specific "addition of a Mean Arterial Pressure (MAP) feature" is described as a software feature that "automates the calculation" using a known formula. Therefore, a separate training set for this specific MAP feature is unlikely to have been required or used in the conventional machine learning sense.
- The document does not provide information about a training set since the MAP feature appears to be a direct calculation using a standard formula (
-
How the Ground Truth for the Training Set was Established:
- As inferred above, a specific training set and ground truth establishment for this isolated MAP calculation feature are not described, given its nature as a direct formulaic calculation.
Summary of Key Information:
The core of this submission revolves around adding a simple, formula-based calculation for MAP. The primary study presented is a clinical validation confirming that the device's computed MAP aligns with a known industry standard (ISO 81060-2) when compared against an invasive reference device. This is a technical performance validation rather than a complex AI-driven diagnostic study.
Ask a specific question about this device
(147 days)
. §870.1100 alarm, blood-pressure
The Portrait VSM vital signs monitor is intended to monitor a single patient's vital signs at the site of care or during intra-hospital transport.
The noninvasive oscillometric blood pressure parameter is intended for measurement of systolic, and mean arterial blood pressure, as well as pulse rate, for adult, pediatric and neonatal patients.
The optional GE TruSignal pulse oximetry and accessories are indicated for the continuous nonitoring of functional Oxygen Saturation (SpO2) and pulse rate, including monitoring conditions of clinical patient motion or low perfusion, with adult, pediatric and neonatal patients.
The optional Masimo SET® pulse oximetry and accessories are indicated for the continuous nonitoring of functional Oxygen Saturation (SpO2) and pulse rate, during both no motion conditions, and for patients who are well or poorly perfused (low perfusion) for adult, pediatric and neonatal patients.
The optional Nellcor™ pulse oximetry and accessories are indicated for the continuous noninvasive monitoring of functional Oxygen Saturation (SpO2) and pulse rate of adult, pediatric, and neonatal patients during both motion and non-motion conditions, and for patients who are well or poorly perfused.
The optional Welch Allyn® SureTemp® Plus electronic thermometer is intended to measure one of oral, axillary, and rectal temperature of adult and pediatric patients.
The optional Exergen TemporalScanner thermometer is intermittent measurement of human body temperature of patients of all ages.
The optional HeTaiDa electronic infrared non-touch thermometer is intermittent measurement of human body temperature of patients of all ages.
A wireless network connection is provided to transmit clinical data into various hospital information systems. An optional remote alarm cable connection is intended to complement visual and audible alarms and not replace the need for the presence of a caregiver.
The portable device is designed for use in hospital-type facilities. The Portrait VSM vital signs monitor can also be used in satellite areas or alternate care settings.
The Portrait VSM vital signs monitor is intended for use under the direct supervision of a licensed health care practitioner.
The Portrait VSM vital signs monitor is not intended for use during MRI.
"Portable" refers to the ability of the Portrait VSM vital signs monitor to be easily moved by the caregiver, such as on a roll stand.
The proposed Portrait™ VSM is a vital signs monitor which is developed based on primary predicate vital signs monitor VC150(K133810) with integrated NIBP and SpO2 design from a secondary predicate monitor B105M (K213490) and provided additional non-contact infrared body temperature measurement option by supporting OEM thermometer (K171888) previously cleared by FDA.
In addition to the added non-contact infrared body thermometer, the proposed monitor Portrait™ VSM also offer several enhancements:
New hardware platform
Adopted equivalent NIBP design from B105M(K213490)
Adopted equivalent SpO2 design from B105M(K213490)
Compatible with Recorder B1X5-REC
Support Round Advisor in spot check mode
Support automatically screens brightness adjustment.
Improved Early Warning Score
Addtional alarm management enhancement.
Additional cybersecurity enhancement
The proposed monitor Portrait™ VSM adopts larger 10-inch LCD touch screen with improved Industrial Design (ID) to be more portable and more compact for clinicians than the primary predicate monitor VC150 (K133810) while maintaining the same primary function and operation.
As with the predicate Monitor VC150 (K133810), the proposed Portrait™ VSM is Vital Signs Monitor, utilizing an LCD display and can measure the most commonly used vital signs of patient: Non-invasive Blood Pressure (NIBP), Pulse Rate (PR), Temperature (Temp), and Pulse Oxygen Saturation (SpO2).
Same as the predicate monitor VC150 (K133810), the proposed monitor Portrait™ VSM also has three choices for SpO2 include GE TruSignal™; Nellcor™ or Masimo SET® and temperature measurement from Exergen® TemporalScanner™, and Welch Allyn® SureTemp®.
Both the predicate monitor VC150 (K133810) and the proposed monitor Portrait™ VSM can be configured to be used for Spotchecking or for continuous morning, the device can send measured patients' data to EMR (Electronic Medical Record) system by interfacing to Hospital Information Systems (HIS) over a wired or wireless network.
Moreover, same as the predicate monitor VC150 (K133810), the proposed monitor Portrait™ VSM can be powered by battery or AC, has a carrying handle and can be placed on a shelf or table or mounted in a variety of ways using a mounting plate located on the bottom of the monitor.
The provided document is a 510(k) Summary for the GE Medical Systems Information Technologies, Inc. Portrait VSM vital signs monitor. It describes the device, its intended use, and a comparison to predicate devices, along with summaries of non-clinical and clinical testing.
However, the document explicitly states that "the proposed monitor Portrait™ VSM did not require clinical studies to support substantial equivalence." This means there is no detailed clinical study described in this document that proves the device meets specific acceptance criteria based on human-in-the-loop performance or expert-adjudicated ground truth, as would be expected for a complex AI/ML-driven device.
The document primarily focuses on demonstrating substantial equivalence to existing predicate devices through bench testing, compliance with consensus standards, and verification of hardware/software functionality, electrical safety, usability, and environmental performance.
Therefore, I cannot fulfill all parts of your request as the provided text does not contain a study with the specific elements you've asked for related to clinical performance verification with AI/ML and human readers.
However, I can extract the acceptance criteria (in terms of standards compliance and functional equivalence) and the reported performance from the non-clinical testing described.
Here's what can be extracted and what cannot be provided given the document's content:
Acceptance Criteria and Device Performance (Based on Non-Clinical Testing and Equivalence Claim)
Since no clinical study was required, the "acceptance criteria" for this device's submission are primarily based on demonstrating:
- Functional Equivalence to legally marketed predicate devices.
- Compliance with relevant electrical safety, EMC, usability, and performance standards for vital signs monitors.
- Verification of hardware and software specifications through bench testing.
Therefore, the table below will reflect the claimed equivalence and standards compliance as the "performance" rather than specific accuracy metrics against a clinical ground truth from a reader study.
Acceptance Criterion (Based on Equivalence/Standards) | Reported Device Performance (from Non-Clinical Testing) |
---|---|
Functional Equivalence to Predicate VC150 (K133810) and B105M (K213490) | The Portrait™ VSM is described as having "essentially same" features and parameters as the VC150. It incorporates NIBP and SpO2 design from the B105M, and supports an OEM thermometer previously cleared (K171888). Minor differences (e.g., larger screen, capacitive touch, wired network, specific Masimo/Nellcor OEM boards) are highlighted as either equivalent or improvements that do not affect safety/effectiveness. |
Non-Invasive Blood Pressure (NIBP) Performance | Compliance with IEC 80601-2-30:2018 ("Particular requirements for the basic safety and essential performance of automated non-invasive sphygmomanometers"). The NIBP design is identical to predicate B105M (K213490) and uses the SuperSTAT algorithm (K022834). |
Pulse Oximetry (SpO2) Performance | Compliance with ISO 80601-2-61:2017+C1:2018 ("Particular requirements for basic safety and essential performance of pulse oximeter equipment"). GE TruSignal SpO2 design is identical to predicate B105M (K213490). Different Masimo (MS-2011SB, K053269) and Nellcor (NELL1-SR OxiMax, K060576) OEM boards are used, which are noted to have been implemented in predicate B105M (K213490). |
Temperature Measurement Performance | Compliance with ISO 80601-2-56:2017+AMD1:2018 ("Particular requirements for basic safety and essential performance of clinical thermometers for body temperature measurement") and ASTM E1112-00 (2018) ("Standard Specification for Electronic Thermometer for Intermittent Determination of Patient Temperature"). Supports Welch Allyn SureTemp, Exergen TemporalScanner, and the added HeTaiDa Non-Contact Infrared Body Thermometer (K203332). |
General Safety (Electrical, EMC) | Compliance with IEC 60601-1:2005+A1:2012+A2:2020 (Electrical safety) and IEC 60601-1-2:2014+A1:2020 (EMC). Also passed IEC TR 60601-4-2:2016. |
Alarm System Performance | Compliance with IEC 60601-1-8:2006+A1:2012+A2:2020 (General requirements for alarm systems). Alarm volume ranges (e.g., Min >= 45dBA, Max |
Ask a specific question about this device
(192 days)
CFR 870.2700/ DQA
21 CFR 870.2340/ DPS
21 CFR 870.2710/ DPZ
21 CFR 870.2300/ DRT
21 CFR 870.1100
CFR 870.2700/ DQA
21 CFR 870.2340/ DPS
21 CFR 870.2710/ DPZ
21 CFR 870.2300/ DRT
21 CFR 870.1100
CFR 870.2700/ DQA
21 CFR 870.2340/ DPS
21 CFR 870.2710/ DPZ
21 CFR 870.2300/ DRT
21 CFR 870.1100
Radius VSM:
The Radius VSM and accessories are intended to be used as both a wearable multi-parameter patient monitor and an accessory to a multi-parameter patient monitor that is intended for multi-parameter physiological patient monitoring in hospital and healthcare facilities.
The Radius VSM and accessories are indicated for the monitoring of hemodynamic (including ECG, arrhythmia detection, non-invasive blood pressure, SpO2, Pulse Rate, PVi, heart rate, and temperature), and respiratory (e.g., impedance, acoustic, and pleth-based respiration rate) physiological parameters along with the orientation and activity of adults.
The Radius VSM and accessories are indicated for the non-invasive continuous monitoring of functional oxygen saturation of arterial hemoglobin (SpO2) and Pulse Rate (PR) of well or poorly perfused adults during both no motion and motion conditions.
The Radius VSM and accessories are indicated for continuous monitoring of skin temperature of adults.
The Radius VSM and accessories are indicated for monitoring of the orientation and activity of patients including those susceptible to pressure ulcers.
The Radius VSM and accessories are indicated for the continuous non-invasive monitoring of PVI as a measure of relative variability of the photoplethysmograph (pleth) of adults during no motion conditions. PVi may be used as a noninvasive dynamic indicator of fluid responsiveness in select populations of mechanically ventilated adult patients. Accuracy of PVi in predicting fluid responsiveness is variable and influenced by numerous patient, procedure and device related factors. PV i measures the variation in the plethysmography amplitude but does not provide measurements of stroke volume or cardiac output. Fluid management decisions should be based on a complete assessment of the patient's condition and should not be based solely on PVi.
Devices with Masimo technology are only indicated for use with Masimo accessories.
Radius VSM Accessories:
Radius VSM ECG Electrodes are disposable, single-patient ECG electrodes intended to acquire ECG signals from the surface of the body. They are indicated for use on adults for up to 3 days of skin surface contact.
Radius VSM Blood Pressure Cuffs are accessories intended to be use with a noninvasive blood pressure measurement system to measure blood pressure. They are indicated for use on adults during no motion conditions.
The Radius VSM and Accessories is a wearable, multi-modular patient monitoring platform that allows for the ability to scale and tailor the use of monitoring technologies based upon the hospital's and clinician's assessment of what technologies are appropriate. The purpose of this submission is the premarket notification for the introduction of Masimo Radius VSM and Accessories, including its use with the previously cleared Root (K191882) and Masimo Patient SafetyNet (K071047).
The Radius VSM and Accessories system comprises of the Radius VSM Wearable Monitor, Radius VSM ECG Module and Electrodes, and the Radius VSM NiBP Module and Cuff.
The provided text describes the acceptance criteria and study results for the Masimo Radius VSM and Accessories device, focusing specifically on the Non-invasive Blood Pressure (NiBP) feature.
1. Acceptance Criteria and Reported Device Performance (NiBP Feature):
The clinical performance analysis for the NiBP feature supported by the Masimo Radius VSM device had the following acceptance criteria and reported values:
Parameter | Acceptance Criteria | Reported Device Performance | Pass/Fail |
---|---|---|---|
Mean value of the differences ( $\bar{x}_n$ ) | $ \bar{x}_n \le 5$ mmHg | Systolic: -1.23 mmHg | Pass |
Diastolic: -2.67 mmHg | Pass | ||
Standard deviation of differences ( $s_n$ ) | $s_n \le 8$ mmHg | Systolic: 7.32 mmHg | Pass |
Diastolic: 7.13 mmHg | Pass | ||
Standard deviation of differences per subject (sm) | Systolic: ≤ 6.82 mmHg | Systolic: 6.17 mmHg | Pass |
Diastolic: ≤ 6.39 mmHg | Diastolic: 6.26 mmHg | Pass |
The device met all specified acceptance criteria for the NiBP feature.
2. Sample Size and Data Provenance for the Test Set:
- Sample Size:
- NiBP Feature: 89 subjects.
- ECG Waveform Comparison: 31 subjects.
- Patient Posture, Position, and Activity: 20 subjects.
- Aggregate Respiration Rate (First Study): 48 subjects.
- Aggregate Respiration Rate (Second Study): The number of healthy volunteer subjects is not explicitly stated, but it's implied to be a separate group for validation of integration.
- Data Provenance: The document does not explicitly state the country of origin. The studies are described as "clinical studies," implying prospective data collection for the purpose of validating the device. The term "healthy volunteer subjects" used in the fifth study further suggests prospective, controlled data collection.
3. Number of Experts and Qualifications for Ground Truth:
The document does not specify the number or qualifications of experts used to establish ground truth for any of the studies mentioned.
4. Adjudication Method for the Test Set:
The document does not describe any specific adjudication method for the test set data.
5. MRMC Comparative Effectiveness Study:
No mention of a Multi-Reader Multi-Case (MRMC) comparative effectiveness study or human readers improving with AI assistance is made in the provided text. The studies focus on device performance against reference measurements or previously cleared monitors/algorithms, not on human-AI collaboration.
6. Standalone Performance (Algorithm Only):
- For the NiBP feature, the study was conducted to validate the clinical performance of the Radius VSM's NiBP feature against reference blood pressure measurements, implying standalone performance of the algorithm integrated into the device.
- For the ECG waveform comparison, the device's ECG output was compared to an existing FDA-cleared ECG monitor, indicating standalone performance of the device's ECG functionality.
- For the patient posture, position, and activity feature, the testing supported the "correct integration of the algorithm that was previously cleared," suggesting a focus on the device's implementation of an existing standalone algorithm.
- For the Aggregate Respiration Rate, the algorithm's performance was evaluated against manually annotated capnography data, indicating standalone algorithm performance.
7. Type of Ground Truth Used:
- NiBP: Clinical performance was validated through comparison against "reference blood pressure measurements."
- ECG: Comparison against an "FDA cleared ECG monitor."
- Patient Posture, Position, and Activity: Based on the "correct integration of the algorithm that was previously cleared." The original ground truth for this algorithm (K191882) is not detailed here, but the study validates its implementation in the new device.
- Aggregate Respiration Rate: "Reference respiration rate derived from manual annotated capnography data."
8. Sample Size for the Training Set:
The document does not provide information on the sample size used for training sets for any of the algorithms or features. The studies described are validation (test set) studies.
9. How Ground Truth for the Training Set was Established:
As no information regarding training sets is provided, there is no detail on how their ground truth was established. The document focuses on the validation of integrated features, some of which (like PVi, RRa, and position monitoring) leverage previously cleared Masimo technologies, implying that their development and training (if applicable) occurred prior to this submission.
Ask a specific question about this device
(134 days)
CFR 870.1025 | monitor, St Segment with alarm |
| DSJ - 21 CFR 870.1100
Indications for Use for CARESCAPE Canvas 1000:
CARESCAPE Canvas 1000 is a multi-parameter patient monitor intended for use in multiple areas within a professional healthcare facility.
CARESCAPE Canvas 1000 is intended for use on adult, pediatric, and neonatal patients one patient at a time.
CARESCAPE Canvas 1000 is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic analysis and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution and pulse contour), temperature, mixed venous oxygen saturation, and central venous oxygen saturation),
· respiratory (impedance respiration, airway gases (CO2, O2, N2O, and anesthetic agents), spirometry, gas exchange), and
· neurophysiological status (including electroencephalography, Entropy, Bispectral Index (BIS), and neuromuscular transmission).
CARESCAPE Canvas 1000 is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, irregular, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ ventricular tachycardia, ventricular tachycardia, and VT>2. CARESCAPE Canvas 1000 also shows alarms from other ECG sources.
CARESCAPE Canvas 1000 also provides other alarms, trends, snapshots and events, and calculations and can be connected to displays, printers and recording devices.
CARESCAPE Canvas 1000 can interface to other devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
CARESCAPE Canvas 1000 is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
CARESCAPE Canvas 1000 is not intended for use in an MRI environment.
Indications for Use for CARESCAPE Canvas Smart Display:
CARESCAPE Canvas Smart Display is a multi-parameter patient monitor intended for use in multiple areas within a professional healthcare facility.
CARESCAPE Canvas Smart Display is intended for use on adult, pediatric, and neonatal patients one patient at a time.
CARESCAPE Canvas Smart Display is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic analysis and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution), and temperature, and · respiratory (impedance respiration, airway gases (CO2)
CARESCAPE Canvas Smart Display is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, irregular, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ ventricular tachycardia, ventricular tachycardia, and VT>2. CARESCAPE Canvas Smart Display also shows alarms from other ECG sources.
CARESCAPE Canvas Smart Display also provides other alarms, trends, snapshots and events. CARESCAPE Canvas Smart Display can use CARESCAPE ONE or CARESCAPE Patient Data Module (PDM) as patient data acquisition devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
CARESCAPE Canvas Smart Display is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
CARESCAPE Canvas Smart Display is not intended for use in an MRI environment.
Indications for Use for CARESCAPE Canvas D19:
CARESCAPE Canvas D19 is intended for use as a secondary display with a compatible host device. It is intended for displaying measurement and parametric data from the host device and providing visual and audible alarms generated by the host device.
CARESCAPE Canvas D19 enables controlling the host device, including starting and discharging a patient case, changing parametric measurement settings, changing alarm limits and disabling alarms.
Using CARESCAPE Canvas D19 with a compatible host device enables real-time multi-parameter patient monitoring and continuous evaluation of the patient's ventilation, oxygenation, hemodynamic, circulation, temperature, and neurophysiological status.
Indications for Use for F2 Frame; F2-01:
The F2 Frame, module frame with two slots, is intended to be used with compatible GE multiparameter patient monitors to interface with two single width parameter modules, CARESCAPE ONE with a slide mount, and recorder.
The F2 Frame is intended for use in multiple areas within a professional healthcare facility. The F2 Frame is intended for use under the direct supervision of a licensed healthcare practitioner, or by person trained in proper use of the equipment in a professional healthcare facility.
The F2 Frame is intended for use on adult, pediatric, and neonatal patients and on one patient at a time.
Hardware and software modifications carried out on the legally marketed predicate device CARESCAPE B850 V3.2, resulted in new products CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display, along with the CARESCAPE Canvas D19 and F2 Frame (F2-01) all of which are the subject of this submission.
CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display are new modular multi-parameter patient monitoring systems. In addition, the new devices CARESCAPE Canvas D19 and F2 Frame (F2-01) are a new secondary display and new module frame respectively.
The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display patient monitors incorporates a 19-inch display with a capacitive touch screen and the screen content is user-configurable. They have an integrated alarm light and USB connectivity for other user input devices. The user interface is touchscreen-based and can be used also with a mouse and a keyboard or a remote controller. The system also includes the medical application software (CARESCAPE Software version 3.3). The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display include features and subsystems that are optional or configurable.
The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display are compatible with the CARESCAPE Patient Data Module and CARESCAPE ONE acquisition device via F0 docking station (cleared separately).
For the CARESCAPE Canvas 1000 patient monitor, the other type of acquisition modules, E-modules (cleared separately) can be chosen based on care requirements and patient needs. Interfacing subsystems that can be used to connect the E-modules to the CARESCAPE Canvas 1000 include a new two-slot parameter module F2 frame (F2-01), a five-slot parameter module F5 frame (F5-01), and a seven-slot parameter module F7 frame (F7-01).
The CARESCAPE Canvas 1000 can also be used together with the new secondary CARESCAPE Canvas D19 display. The CARESCAPE Canvas D19 display provides a capacitive touch screen, and the screen content is user configurable. The CARESCAPE Canvas D19 display integrates audible and visual alarms and provides USB connectivity for other user input devices.
Please note that the provided text is a 510(k) summary for a medical device and primarily focuses on demonstrating substantial equivalence to a predicate device through non-clinical bench testing and adherence to various standards. It explicitly states that clinical studies were not required to support substantial equivalence. Therefore, some of the requested information regarding clinical studies, human expert involvement, and ground truth establishment from patient data will likely not be present.
Based on the provided text, here's the information regarding acceptance criteria and device performance:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not present a formal table of specific, quantifiable acceptance criteria alongside reported performance data. Instead, it states that various tests were conducted to demonstrate that the design meets specifications and complies with consensus standards. The performance is generally reported as "meets the specifications," "meets the EMC requirements," "meets the electrical safety requirements," and "fulfilled through compliance."
However, we can infer some "acceptance criteria" based on the standards and tests mentioned:
Category | Inferred Acceptance Criteria (Based on Compliance) | Reported Device Performance |
---|---|---|
General Performance | Device design meets specifications relevant to its intended use (multi-parameter patient monitoring, ECG, ST segment, arrhythmia detection, various physiological measurements). | "demonstrating the design meets the specifications" |
Hardware | Hardware functions as intended and meets safety/performance standards. | "Hardware Bench Testing conducted" |
Alarms | Alarm system (classification, notification, adjustment, critical limits, On/Off, audio silencing) functions correctly and meets relevant standards (IEC 60601-1-8). | "Alarms Bench Testing conducted." "Alarm management core functionalities: Classification and notification of alarms, Adjustment of alarm settings, Possibility to set critical alarm limits, Alarm On/Off functionality and audio silencing - Identical (to predicate)." "meets the specifications listed in the requirements." "Additional data is provided for compliance to: IEC 60601-1-8: 2020..." |
EMC | Meets Electromagnetic Compatibility (EMC) requirements as per IEC 60601-1-2 Edition 4.1 2020 and FDA guidance. | "meet the EMC requirements described in IEC 60601-1-2 Edition 4.1 2020." "evaluated for electromagnetic compatibility and potential risks from common emitters." |
Electrical Safety | Meets electrical safety requirements as per IEC 60601-1:2020 "Edition 3.2" and 21 CFR Part 898, § 898.12 (electrode lead wires and cables). | "meet the electrical safety requirements of IEC 60601-1:2020 'Edition 3.2'." "performed by a recognized independent and Certified Body Testing Laboratory (CBTL)." "fulfilled through compliance with IEC 60601-1:2020... clause 8.5.2.3." |
Specific Parameters | Meets performance standards for various physiological measurements (ECG, ST segment, NIBP, SpO2, temp, etc.) as detailed by specific IEC/ISO standards (e.g., IEC 60601-2-25, IEC 60601-2-27, IEC 80601-2-30, ISO 80601-2-55, etc.). Includes the EK-Pro arrhythmia detection algorithm performing equivalently to the predicate. | "Additional data is provided for compliance to: IEC 60601-2-25:2011, IEC 60601-2-27:2011, IEC 80601-2-30: 2018, IEC 60601-2-34: 2011, IEC 80601-2-49: 2018, ISO 80601-2-55: 2018, ISO 80601-2-56: 2017+AMD1:2018, ISO 80601-2-61: 2017, IEC 80601-2-26:2019, IEC 60601-2-40: 2016, ANSI/AAMI EC57:2012." "EK-Pro arrhythmia detection algorithm: EK-Pro V14 - Identical (to predicate)." |
Environmental | Operates and stores safely within specified temperature, humidity, and pressure ranges. Withstands mechanical stress, fluid ingress, and packaging requirements. | "confirmed to meet the specifications listed in the requirements." "Environmental (Mechanical, and Thermal Safety) testing" conducted. "Fluid ingress." "Packaging Bench Testing." |
Reprocessing | Reprocessing efficacy validation meets acceptance criteria based on documented instructions and worst-case devices/components, following FDA guidance "Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling." | "Reprocessing efficacy validation has been conducted." "The reprocessing efficacy validation met the acceptance criteria for the reprocessing efficacy validation tests." |
Human Factors/Usability | Meets usability requirements as per IEC 60601-1-6: 2020 and IEC 62366-1: 2020, and complies with FDA guidance "Applying Human Factors and Usability Engineering to Medical Devices." | "Summative Usability testing has been concluded with 16 US Clinical, 16 US Technical and 15 US Cleaning users." "follows the FDA Guidance for Industry and Food and Drug Administration Staff 'Applying Human Factors and Usability Engineering to Medical Devices'." |
Software | Complies with FDA software guidance documents (e.g., Content of Premarket Submissions for Software, General Principles of Software Validation, Off-The-Shelf Software Use) and software standards IEC 62304: 2015 and ISO 14971:2019, addressing patient safety, security, and privacy risks. | "follows the FDA software guidance documents as outlined in this submission." "Software testing was conducted." "Software for this device is considered as a 'Major' level of concern." "Software standards IEC 62304: 2015 ... and risk management standard ISO 14971:2019 ... were also applied." "patient safety, security, and privacy risks have been addressed." |
2. Sample Size Used for the Test Set and Data Provenance
- Test Set Sample Size: The document implies that the "test set" for performance evaluation was the device itself and its components as described ("CARESCAPE Canvas 1000, CARESCAPE Canvas Smart Display, CARESCAPE Canvas D19 and F2 Frame (F2-01)").
- For usability testing, "16 US Clinical, 16 US Technical and 15 US Cleaning users" were involved.
- Data Provenance: The testing described is non-clinical bench testing.
- For usability testing, the users were located in the US.
- No direct patient data or retrospective/prospective study data is mentioned beyond the device's inherent functional characteristics being tested according to standards.
3. Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications of Those Experts
- Number of Experts: Not applicable in the context of establishing "ground truth" for patient data, as no clinical studies with patient data requiring expert adjudication were conducted or reported to establish substantial equivalence.
- For usability testing, "16 US Clinical, 16 US Technical and 15 US Cleaning users" participated. Their specific qualifications (e.g., years of experience, types of healthcare professionals) are not detailed in this summary.
4. Adjudication Method for the Test Set
- Not applicable, as no clinical studies with patient data requiring adjudication were conducted or reported.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, and the Effect Size of How Much Human Readers Improve with AI vs. Without AI Assistance
- No MRMC study was done, as the document explicitly states: "The subjects of this premarket submission... did not require clinical studies to support substantial equivalence." The device is a patient monitor, not an AI-assisted diagnostic tool for image interpretation or similar.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done
- The performance evaluations mentioned (e.g., for general device functionality, electrical safety, EMC, specific parameter measurements like ECG/arrhythmia detection) represent the device's standalone performance in a bench setting, demonstrating its adherence to established standards and specifications. There is no separate "algorithm only" performance study reported distinctly from integrated device testing. The EK-Pro V14 algorithm, which is part of the device, is noted as "identical" to the predicate, implying its performance characteristics are maintained.
7. The Type of Ground Truth Used
- For the non-clinical bench testing, the "ground truth" was established by conformance to internationally recognized performance and safety standards (e.g., IEC, ISO, AAMI/ANSI) and the engineering specifications of the device/predicate. These standards define the acceptable range of performance for various parameters.
- For usability testing, the "ground truth" was the successful completion of tasks and overall user feedback/satisfaction as assessed by human factors evaluation methods.
- No ground truth from expert consensus on patient data, pathology, or outcomes data was used, as clinical studies were not required.
8. The Sample Size for the Training Set
- Not applicable. This document describes a 510(k) submission for a patient monitor, not a machine learning or AI model trained on a dataset. The device contains "Platform Software that has been updated from version 3.2 to version 3.3," but this refers to traditional software development and not a machine learning model requiring a "training set" in the AI sense.
9. How the Ground Truth for the Training Set Was Established
- Not applicable, as there is no mention of a "training set" in the context of machine learning. The software development likely followed conventional software engineering practices, with ground truth established through design specifications, requirements, and verification/validation testing.
Ask a specific question about this device
(582 days)
Cardiac (Including
Cardiotachometer & Rate Alarm) |
| Cardiovascular | §870.1100
The NC10 and NC12 patient monitors are intended to be used for monitoring, displaying, alarming and storing of multiple physiological parameters These parameters include ECG (3-lead or 12-lead selectable, arrhythmia detection, heart rate (HR)), Respiration rate (RR), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), anesthetic gas (AG), and Bispectral index (BIS) for a single patient.
All parameters can be monitored on single adult, pediatric, and neonatal patients except:
- · BIS monitoring is intended for adult and pediatric patients only;
- · C.O. monitoring is restricted to adult patients only;
· Arrhythmia analysis is intended to use on adult patients only and is not intended and shall not be used on pediatric and neonatal population. - · When using COMEM SpO2, the monitor is intended to be used on adult patients only.
- · NIBP measurement continual mode is not applicable to neonates.
The monitors are to be used in general healthes by clinical physicians or appropriate medical staff under the direction of physicians.
The monitors are not intended for helicopter transport, hospital ambulance, or home use.
The monitors do not measure, display, or trend changes in the ST segment.
The monitors do not intend for use as apnea monitors.
The monitors are not intended for use in MRI or CT environments.
The monitors are not used on patients who have a demonstrated need for cardiac monitoring known arrhythmias of VT, Accelerated Idioventricular rhythm and Torsades de Pointes.
The NC10 and NC12 patient monitors are intended to be used for monitoring, displaying, reviewing, alarming and storing multiple physiological parameters. These parameters include ECG (3-lead, 5-lead or 12-lead selectable, arrhythmia detection, heart rate (HR)), Respiration rate (RR), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), anesthetic gas (AG), and Bispectral index (BIS) for a single patient.
All parameters can be monitored on single adult, pediatric, and neonatal patients except:
BIS monitoring is intended for adult patients only; C.O. monitoring is restricted to adult patients only; Arrhythmia analysis is intended for use with adult patients only and is not intended and shall not be used on pediatric and neonatal population. When using COMEM SpO2, the monitor is intended to be used on adult patients only. NIBP measurement continual mode is not applicable to neonates. Both models are designed with:
Same system framework and components
Same hardware design principle
Same software platform
Same parameters measurement subsystems (including parameters modules and accessories)
The only difference between NC10 and NC12 is the display size.
The acceptance criteria and supporting study details for the Multi-Parameter Patient Monitor (NC10 and NC12) are provided below, based on the given FDA 510(k) summary.
1. Table of Acceptance Criteria and Reported Device Performance
The document does not explicitly present specific "acceptance criteria" for each physiological parameter in a tabular format with corresponding "reported device performance." Instead, it compares the subject device's specifications to those of the predicate device, stating that the subject device's performance aligns with or is a subset of the predicate's performance, and that the device meets relevant consensus standards. The "Comparison" column in the provided tables indicates "Same" for most parameters, implying that the subject device's performance is equivalent to the established performance of the predicate device. For the "Comen SpO2" feature, where there's a difference, the document states, "The SpO2 accuracy met ISO 80601-2-61 and was validated by the clinical study," indicating that its performance meets the standard.
Here's a condensed representation of the key performance specifications for the subject device (NC10 and NC12), which also serve as implied acceptance criteria given the "Same" comparison to the predicate:
Parameter | Method / Range / Accuracy (NC10 & NC12) |
---|---|
ECG (Arrhythmia Analysis) | Asystole, ventricular fibrillation, R ON T, VT>2, Couplet, PVC, Bigeminy, Trigeminy, Brady, PNC, PNP, Missed Beats, Heart Pause, Irregular Heart Beat, VTAC, Tachy, PVCs Too High, Extreme Tachycardia, Extreme Bradycardia, Ventricular Rhythm. |
Respiration | Method: Trans-thoracic impedance; Range: adult:0-120 rpm, pediatrics:0-150rpm, neonate:0-150rpm; Accuracy: 7 to 150rpm: ±2rpm or ±2%, whichever is greater. |
SpO2 (Masimo) | Method: red and infrared light; Range: 1~100%; Accuracy: No motion: 70-100% ±2%(adult/pediatric), 70-100% ±3%(neonate); Motion: 70-100% ±3%. |
SpO2 (Nellcor) | Method: red and infrared light; Range: 0~100%; Accuracy: 70-100% ±2%(adult/pediatric), 70-100% ±3%(neonate). |
SpO2 (Comen) | Method: red and infrared light; Range: 0~100%; Accuracy: 70-100% ±3% (adult). (Note: Restricted to adult use compared to predicate) |
Pulse Rate (from SpO2, IBP, NIBP) | Ranges: 20-350 bpm (variable by source); Accuracy: ±1bpm to ±5bpm or ±1% to ±3% (variable by source and conditions). |
NIBP | Method: Oscillometry; Range: Adult: systolic:40-270 mmHg, diastolic:10-215 mmHg; Pediatrics: systolic:40-200 mmHg, diastolic:10-150 mmHg; Neonate: systolic:40-135 mmHg, diastolic:10-100 mmHg; Error: Max mean error: ±5 mmHg, Max standard deviation: 8 mmHg. |
Temperature | Method: Thermal resistance; Range: 0-50°C; Accuracy: ±0.1°C. |
CO2 (Masimo) | Method: Infrared absorption; Range: 0-190mmHg; AwRR:0-150rpm; Accuracy: 0-114mmHg: ±(2.25mmHg+reading×4%). |
CO2 (Respironics) | Method: Infrared absorption; Range: 0-150mmHg; AwRR: 0, 2-150bpm; Accuracy: 0-40mmHg: ±2mmHg, other ranges higher % errors. |
IBP | Method: Direct invasive measurement; Range: -50 to 300 mmHg; Accuracy: ±2% or ±1 mmHg, whichever is greater (excluding sensor error). |
Cardiac Output | Method: Thermodilution; Range: 0.1 to 20 L/min; Accuracy: ±5% or ±0.1 L/min, whichever is greater. |
Anesthetic Gas (AG) | Method: Infrared absorption; Ranges for various gases; Accuracy for CO2, N2O, Hal, Enf, Iso, Sev, Des, O2, awRR. |
BIS | Range and Accuracy: SQI: 0-100%, 1%; EMG: 0 |
The document implies that the "reported device performance" for the subject device meets or is equivalent to these specified ranges and accuracies through bench testing and clinical studies, confirming compliance with relevant standards.
2. Sample Size Used for the Test Set and Data Provenance
- Sample Size for Test Set: The document does not specify exact numerical sample sizes for each clinical test. It mentions that clinical accuracy of NIBP, SpO2, and respiratory rate were validated for the intended patient population.
- For SpO2 accuracy, it states the validation was done "using the method outlined in ISO 80601-2-61:2017 and the FDA guidance Pulse Oximeters - Premarket Notification Submissions [510(k)s]: Guidance for Industry and Food and Drug Administration Staff, March 2013." These standards typically require a certain number of subjects (often healthy volunteers) with induced hypoxemia for desaturation studies to demonstrate accuracy across the specified range. However, the exact number is not provided in this summary.
- For NIBP accuracy, it states validation was "according to ISO 81060-2 which contains the requirements for clinical accuracy and the protocols for investigating the NIBP determination clinical accuracy." This standard also prescribes specific subject enrollment criteria and measurement methods.
- For Respiratory Rate (RR) accuracy, it was validated "by clinical testing to compare the measurement of the subject device and that of a clinician-scored capnography device, manually scored end-tidal CO2 (EtCO2) capnography." The sample size for this is not detailed.
- Data Provenance: The document does not explicitly state the country of origin of the data. It also does not explicitly state whether the studies were retrospective or prospective, though clinical validation studies for device clearance are typically prospective. It does say "All clinical accuracy validation studies were conducted in accordance with standard ISO 14155:2020," which governs clinical investigation of medical devices, generally implying prospective collection.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts
The document does not provide details on the number or qualifications of experts used for establishing ground truth, as it is a multi-parameter patient monitor.
- For SpO2, the ground truth would typically be established by a CO-oximeter reading during a controlled desaturation study, as per ISO 80601-2-61. This is a highly objective measurement.
- For NIBP, ground truth is typically established by direct intra-arterial blood pressure measurements, not by expert consensus.
- For Respiratory Rate, the ground truth was "clinician-scored capnography device, manually scored end-tidal CO2 (EtCO2) capnography." This implies clinically trained personnel, but their specific qualifications or number are not provided.
- For Arrhythmia Analysis, and other subjective physiological monitoring parameters, the ground truth source is not explicitly mentioned but typically relies on expert interpretation of ECG waveforms or other data.
4. Adjudication Method for the Test Set
The document does not detail any adjudication methods (e.g., 2+1, 3+1) for the test set, as most of the parameters are quantitative measurements compared against an objective reference standard rather than subjective interpretations requiring adjudication.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done
This document describes a multi-parameter patient monitor, which is a measurement device, not an AI-assisted diagnostic imaging tool. Therefore, an MRMC comparative effectiveness study comparing human readers with and without AI assistance is not applicable to this type of device and was not conducted. The study aims to demonstrate that the device's measurements are accurate and equivalent to predicate devices, not to show an improvement in human reader performance.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done
The entire device, including its algorithms for parameter measurement and arrhythmia detection, operates in a "standalone" fashion to generate the values and alarms displayed to the clinician. The performance validated (e.g., accuracy of SpO2, NIBP, RR, arrhythmia detection) is the inherent performance of the device's algorithms and hardware. While a human uses the device and interprets its output, the core measurements are algorithm-driven.
7. The Type of Ground Truth Used
- SpO2: CO-oximetry in a controlled desaturation study (objective, gold-standard reference for SpO2 saturation).
- NIBP: Direct intra-arterial blood pressure measurements (objective, gold-standard).
- Respiratory Rate: Clinician-scored capnography device, manually scored end-tidal CO2 (EtCO2) capnography. (This suggests an expert-derived observation from an objective measurement, or comparison to another well-established measurement device).
- ECG/Arrhythmia Detection and other parameters: The document implies comparison to established methods and compliance with relevant ISO standards, which would typically involve highly accurate reference measurements and possibly expert review of waveforms for specific event detection.
8. The Sample Size for the Training Set
The document does not provide information about a training set or its sample size. This is common for device clearances that focus on performance validation rather than machine learning algorithm development where distinct training and test sets are crucial. The device's algorithms are likely based on established physiological principles and signal processing, rather than deep learning from a massive training dataset.
9. How the Ground Truth for the Training Set was Established
As no specific training set is mentioned in the filing summary for this device, information regarding the establishment of its ground truth is not applicable or provided. The device's performance is demonstrated through its adherence to established international standards and clinical testing against reference methods.
Ask a specific question about this device
(218 days)
| Computer, diagnostic, pre-
programmed, single-function |
| 870.1100
The BeneVision N12N15/N17/N19/N22 patient monitors are intended for monitoring, displaying, storing, alarming, and transferring of multiple physiological parameters including ECG (3-lead, 5-lead or 12-lead selectable, Arrhythmia Detection, ST Segment Analysis, QT Analysis, and Heart Rate (HR)), Respiration Rate (Resp), Temperature (Temp), Pulse Oxygen Saturation (SpO2), Pulse Rate (PR), Non-invasive Blood Pressure (NIBP), Invasive Blood Pressure (IBP), Pulmonary Artery Wedge Pressure (PAWP), Cardiac Output (C.O.), Continuous Cardiac Output (CCO), Mixed/Central Venous Oxygen Saturation (SvO2/ScvO2), Carbon Dioxide (CO2), Oxygen (O2), Anesthetic Gas (AG), Impedance Cardiograph (ICG), Bispectral Index (BIS), Respiration Mechanics (RM), Neuromuscular Transmission Monitoring (NMT), Electroencephalograph (EEG), and Regional Oxygen Saturation (rSO2). The system also provides an interpretation of resting 12-lead ECG.
All the parameters can be monitored on single adult, pediatric, and neonatal patients except for the following:
- · BIS, RM, CCO, SvO2/ScvO2, PAWP, NMT monitoring, PNP, and PNC are intended for adult and pediatric patients only. CCO using FloTrac is intended for adult patients only;
- · C.O. monitoring and A-Fib are intended for adult patients only;
- · ICG monitoring is intended for only adult patients who meet the following requirements: height: 122 to 229cm, weight: 30 to 155kg.
- · rSO2 monitoring is intended for use in individuals greater than 2.5kg.
The monitors are to be used in healthcare facilities by clinical professionals or under their guidance. They should only be used by persons who have received adequate training in their use. The BeneVision N12/N15/N17/N19/N22 monitors are not intended for helicopter transport, hospital ambulance, or home use.
The BeneVision N1 Patient Monitor is intended for monitoring, reviewing, storing, alarming, and transferring of multiple physiological parameters including ECG (3-lead, 5-lead or 12-lead selectable, Arrhythmia Detection, ST Segment Analysis, and Heart Rate (HR)), Respiration (Resp), Temperature (Temp), Pulse Oxygen Saturation (SpO₂), Pulse Rate (PR), Non-invasive Blood Pressure (NIBP), Invasive Blood Pressure (IBP), Pulmonary Artery Wedge Pressure (PAWP), Carbon Dioxide (CO2) and Oxygen (O2). The system also provides an interpretation of resting 12-lead ECG.
All the parameters can be monitored on single adult, pediatric, and neonatal patients except for the following:
- PAWP, PNP, and PNC are intended for adult and pediatric patients only;
- A-Fib is intended for adult patients only;
The BeneVision N1 monitor is to be used in healthcare facilities. It can also be used during patient transport inside and outside of the hospital environment, whereas N1 configured with WMTS technology can be used inside the hospital only. It should be used by clinical professionals or under their guidance. It should only be used by persons who have received adequate training in its use. It is not intended for home use.
The subject BeneVision N Series Patient Monitors includes six monitors:
- . BeneVision N12 Patient Monitor
- BeneVision N15 Patient Monitor
- BeneVision N17 Patient Monitor ●
- BeneVision N19 Patient Monitor ●
- BeneVision N22 Patient Monitor ●
- BeneVision N1 Patient Monitor
Mindray's BeneVision N Series Patient Monitors provide a flexible software and hardware platform to meet the clinical needs of patient monitoring.
This document is a 510(k) Summary for the Mindray BeneVision N Series Patient Monitors, which focuses on demonstrating substantial equivalence to a previously cleared predicate device (K202405).
The information provided primarily details the device's technical specifications and comparisons to a predicate device, rather than a full study proving the device meets acceptance criteria for a specific medical condition or AI diagnostic output.
Therefore, I cannot fully answer all parts of your request as the document does not contain the detailed clinical study results (like sample sizes for test sets, number of experts for ground truth, adjudication methods, MRMC studies, or specific AI performance metrics) that would typically be found for a device requiring those types of studies (e.g., an AI-powered diagnostic tool).
However, I can extract the relevant information regarding the device's functional and technical performance as demonstrated in this 510(k) submission.
Here's a breakdown of what can be inferred and what is missing:
Acceptance Criteria and Reported Device Performance
The "acceptance criteria" in this context are related to meeting the performance specifications of the predicate device and relevant consensus standards. The "reported device performance" is demonstrated through functional and system-level testing, ensuring the device meets its accuracy specifications for the various physiological parameters it monitors.
Table of "Acceptance Criteria" (Implied Specifications) and "Reported Device Performance" (Conformance):
Parameter / Feature | Implied Acceptance Criteria (from Predicate/Standards) | Reported Device Performance (as stated in document) |
---|---|---|
General Device Performance | Reliability, accuracy, and safety equivalent to the predicate device (K202405). Compliance with general controls and specific standards. | "Mindray conducted functional and system level testing on the subject device. The testing provided an evaluation of the performance of the device relevant to each of the differences between the subject device and the predicate device. The functional and system level testing showed that the devices continue to meet specifications and the performance of the device is equivalent to the predicate." "The results of the bench testing show that the subject device meets its accuracy specification and is substantially equivalent to the predicate device." |
ECG (HR) | HR Measurement range: 15 | No specific deviation reported from these specifications. The device supports intelligent arrhythmia alarms, adjustment of QT calculation, SVT and SVCs/min high arrhythmia alarm, and Multi-lead ECG synchronization analysis. |
ECG (ST) | ST Measurement range: -2.0mV~+2.0mV; Accuracy: -0.8mV~+0.8mV, ±0.02mV or ±10%, whichever is greater, other range: not specified. | No specific deviation reported from these specifications. |
ECG (QT) | QT Measurement range: 200~800ms; Accuracy: ±30ms. | No specific deviation reported from these specifications. Adjustment of QT calculation is a new feature. |
Respiration Rate (Resp) | Measurement range: Adult: 0 to 120 rpm; Pediatric, neonate: 0 to 150 rpm. Accuracy: 7 to 150 rpm: ±2 rpm or ±2%, whichever is greater; 0 to 6 rpm: Not specified. | No specific deviation reported from these specifications. |
Temperature (Temp) | Measurement range: 0 to 50°C (32 to 122°F). Accuracy: ±0.1°C or ±0.2°F (without probe). | No specific deviation reported from these specifications. |
Pulse Oxygen Saturation (SpO2) | Mindray SpO2 module: Range: 0~100% Accuracy: 70% | No specific deviation reported from these specifications. |
Pulse Rate (PR) | Accuracy: ±3 bpm (Mindray SpO2), ±3 bpm without motion, ±5 bpm with motion (Masimo SpO2); 20 | No specific deviation reported from these specifications. |
Non-invasive Blood Pressure (NIBP) | Max mean error: ±5mmHg; Max standard deviation: 8mmHg. PR: ±3 bpm or ±3%, whichever is greater. | No specific deviation reported from these specifications. |
Invasive Blood Pressure (IBP) | Accuracy of module: ±2% or ±1mmHg, whichever is greater (without sensor). | No specific deviation reported from these specifications. New feature: Artifact flag of Arterial Blood Pressure (ABP) shields alarms monitoring support. BeneVision N1 now supports up to 4 IBP channels (vs. 2 in predicate). |
Cardiac Output (C.O.) | Accuracy: ±5% or ±0.1L/min, whichever is greater. TB, TI: ±0.1°C (without sensor). | No specific deviation reported from these specifications. |
Continuous Cardiac Output (FloTrac) | (Not supported in predicate) Measurement range: CCO: 1.0-20.0L/min; Reproducibility: ±6% or 0.1 L/min, whichever is greater. PR:0~220bpm, Arms ≤3bpm. Live pressure display range: -34 to 312 mmHg. MAP/DIA/SYS display range: 0-300 mmHg. Accuracy: ±4% or ±4 mmHg, whichever is greater, in the range of -30 mmHg to 300 mmHg. | Added feature with stated performance specifications as listed. (This is a new feature compared to the predicate, and its performance data is listed as its "acceptance criteria" and "reported performance" upon introduction.) |
Carbon Dioxide (CO2) | Sidestream: CO2: 0 | No specific deviation reported from these specifications. Internal electronic component changes for the AG module. |
Electroencephalograph (EEG/aEEG) | Frequency response: 0.5Hz ~ 50 Hz (-3 dB). Input range: 4 mVpp. DC offset: ±500 mV. CMRR: ≥ 100 dB @ 51 KΩ and 60 Hz. Noise level: ≤ 0.5 uV rms (1Hz to 30 Hz). Differential input resistance: > 15 MΩ @ 10 Hz. Electrode resistance: 0 to 90 KΩ, resolution: ±1 KΩ or 10%, whichever is the greater. | Added EEG-1 module and aEEG module, with their performance specifications stated as meeting these criteria. |
A-Fib Overview | (Not supported in predicate) The A-Fib overview function only collects atrial fibrillation, atrial fibrillation with rapid ventricular rate, atrial fibrillation with R-R long interval and other related events, and the A-Fib overview screen displays the A-Fib specifications. | This is a newly added feature with its intended functionality described. |
Electromagnetic Compatibility & Electrical Safety | Compliance with relevant standards (ANSI/AAMI ES 60601-1:2005, IEC 60601-1-2:2014). | Assessed for conformity and found to comply with ANSI/AAMI ES 60601-1:2005/(R) 2012 and IEC 60601-1-2:2014. Also meets IEC 60601-1-8:2020 for alarm systems. |
Software Verification & Validation | Meets FDA Guidance for Software Contained in Medical Devices. | "Software verification and validation testing was conducted and documentation was provided as recommended by FDA's Guidance... Verification... was conducted to ensure that the product works as designed. Validation was conducted to check the design and performance of the product." |
Detailed Study Information (Based on Document Content):
-
Sample sizes used for the test set and the data provenance:
- The document states that "functional and system level testing" and "bench testing" were conducted.
- However, no specific sample sizes for test sets (e.g., number of patients, number of data recordings) are provided for any of the performance evaluations.
- Data Provenance: Not explicitly stated (e.g., country of origin, retrospective/prospective). The tests described are generic "bench testing" to ensure compliance with technical specifications and standards, not clinical studies.
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
- Not applicable / Not provided. This document describes engineering and bench testing against pre-defined technical specifications and industry standards for physiological measurement accuracy. It does not describe a clinical study involving human experts establishing ground truth for diagnostic interpretation (e.g., for an AI algorithm interpreting medical images).
-
Adjudication method (e.g., 2+1, 3+1, none) for the test set:
- Not applicable / Not provided. Same reason as above.
-
If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- No. This device is a patient monitor. It detects physiological parameters and provides alarms, and some interpretations of ECG (e.g., 12-lead ECG interpretation, arrhythmia detection). It is not an AI-assisted diagnostic device in the sense of image interpretation for which MRMC studies are typically performed. The document details that "optimized auditory ALARM SIGNALS" and "alarm highlight" were added, suggesting improvements to the human-device interface, but not a formal MRMC study on diagnostic improvement.
-
If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:
- The document implies that algorithms for ECG (Mindray or Mortara algorithm for arrhythmia and ST-segment analysis) are embedded in the device. The listed accuracy specifications for these measurements (e.g., HR, ST, QT) reflect the standalone performance of these measurement algorithms and sensors against established benchmarks. However, a formal "standalone study" with detailed methodology, distinct from the general bench testing, is not specifically described or provided with separate results. The performance data listed (e.g., accuracy for HR, ST, QT) serves as the "standalone" performance verification for these integrated functionalities.
-
The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
- For physiological measurements (ECG, SpO2, NIBP, etc.), the "ground truth" would typically refer to reference measurement devices or calibrated simulators used during bench testing to verify the accuracy of the monitor's readings against a known, accurate value.
- For the ECG interpretation (e.g., 12-lead ECG interpretation, arrhythmia detection), the ground truth for the algorithms would have been established during their development and previous clearance processes (Mindray or Mortara algorithms). This document focuses on demonstrating that the integration and revised features maintain that established accuracy rather than re-proving the core algorithms.
-
The sample size for the training set:
- Not provided. This document pertains to the 510(k) clearance of updates to an existing patient monitor series. It does not detail the development or training of new AI/ML algorithms, which would typically involve substantial training datasets. The ECG algorithms (Mindray or Mortara) were presumably "trained" (or developed and validated) previously as part of their initial predicate clearances.
-
How the ground truth for the training set was established:
- Not provided. (See point 7). For existing algorithms like Mortara or Mindray ECG algorithms, ground truth for their original development would likely have been established using large, diverse ECG databases with expert cardiologist interpretations and/or correlation with clinical outcomes where relevant. This particular 510(k) document is concerned with demonstrating equivalence and continued performance with minor changes, not the original algorithm development.
Ask a specific question about this device
(196 days)
cardiac (incl. cardiotachometer & rate alarm) 21 CFR 870.1025 detector and alarm, arrhythmia 21 CFR 870.1100
The CARESCAPE B650 is a multi-parameter patient monitor intended for use in multiple areas and intrahospital transport within a professional healthcare facility.
The CARESCAPE B650 is intended for use on adult, pediatric, and neonatal patients and on one patient at a time. The CARESCAPE B650 is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution and pulse contour), temperature, mixed venous oxygen saturation, and central venous oxygen saturation),
· respiratory (impedance respiration, airway gases (CO2, O2, N2O, and anesthetic agents), spirometry, gas exchange), and
· neurophysiological status (including electroencephalography, Entropy, Bispectral Index (BIS), and neuromuscular transmission).
The CARESCAPE B650 can be a stand-alone monitor or interfaced to other devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
The CARESCAPE B650 is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ventricular tachycardia, ventricular tachycardia, and VT>2. The CARESCAPE B650 also shows alarms from other ECG sources.
The CARESCAPE B650 also provides other alarms, trends, snapshots and calculations, and can be connected to displays, printers and recording devices.
The CARESCAPE B650 is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
Contraindications for using CARESCAPE B650:
The CARESCAPE B650 is not intended for use in a controlled MR environment.
CARESCAPE B650 is a new version of a portable multi-parameter patient monitoring system. The CARESCAPE B650 includes the monitor with built-in CPU, power unit, a 15 inch touch display, the CARESCAPE Software and the battery. CARESCAPE B650 is equipped with two module slots where patient data acquisition modules (E-Module type) can be connected to perform patient monitoring. CARESCAPE B650 is equipped with the ePort interface that supports use of PDM or CARESCAPE ONE patient data acquisition devices. In addition to the ePort interface the PDM module can be also connected directly to the CARESCAPE B650 via special slide mount connector which is in the back of the monitor. The CARESCAPE B650 includes features and subsystems that are optional or configurable.
The provided text is a 510(k) Summary for the GE Healthcare CARESCAPE B650 patient monitor. It focuses on demonstrating substantial equivalence to a predicate device, rather than presenting a detailed study of acceptance criteria and device performance. Therefore, the information requested in your prompt is largely not available within this document.
Here's a breakdown of what can and cannot be extracted based on the provided text:
1. A table of acceptance criteria and the reported device performance
The document does not provide a specific table of acceptance criteria with corresponding reported device performance values in the format you requested. It states: "Bench testing related to software, hardware and performance including applicable consensus standards was conducted on the CARESCAPE B650, demonstrating the design meets the specifications." This is a general statement about testing without specific criteria or performance metrics.
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
This information is not provided in the document. The document mentions "Bench testing related to software, hardware and performance," but does not detail the nature of the test sets, their size, or their origin.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not provided. As this is a 510(k) submission for a patient monitor, the primary evidence relies on engineering and performance testing against established standards, not typically on expert consensus for "ground truth" in the way it might be for an AI diagnostic device.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not provided. Adjudication methods are typically relevant for studies involving human interpretation or subjective assessments, which are not detailed here.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
A multi-reader multi-case (MRMC) comparative effectiveness study was not done, and it is not applicable to this submission. The device is a patient monitor, not an AI-assisted diagnostic tool that would involve human readers. The document explicitly states: "The subject of this premarket submission, CARESCAPE B650 did not require clinical studies to support substantial equivalence."
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
The document describes "Bench testing related to software, hardware and performance" and "Software testing included software design, development, verification, validation and traceability." This implies standalone testing of the device's algorithms and functionality. However, specific details about the results of such standalone performance are not provided in a quantifiable manner against acceptance criteria.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
Given the nature of the device (a multi-parameter patient monitor), "ground truth" would likely be established through:
- Reference measurement devices/standards: For parameters like ECG, blood pressure, oxygen saturation, temperature, etc., the device's measurements would be compared against validated reference devices or established physical standards.
- Simulated physiological signals: For arrhythmia detection, the device would be tested with simulated ECG waveforms containing known arrhythmias.
However, the specific types of "ground truth" used are not explicitly elaborated beyond "bench testing" and "applicable consensus standards."
8. The sample size for the training set
This information is not provided and is generally not applicable in the context of a patient monitor's 510(k) submission unless specific machine learning algorithms requiring training data were a novel aspect of the submission, which is not indicated here. The document describes modifications to software and hardware, implying updates to existing functionalities rather than the introduction of new, data-trained AI models.
9. How the ground truth for the training set was established
This information is not provided and is not applicable for the reasons stated in point 8.
Ask a specific question about this device
(189 days)
cardiac (incl. cardiotachometer & rate alarm) 21 CFR 870.1025 detector and alarm, arrhythmia 21 CFR 870.1100
The CARESCAPE B850 is a multi-parameter patient monitor intended for use in multiple areas within a professional healthcare facility.
The CARESCAPE B850 is intended for use on adult, pediatric, and neonatal patients and on one patient at a time. The CARESCAPE B850 is indicated for monitoring of:
- · hemodynamic (including ECG, ST segment, arthythmia detection, ECG diagnostic analysis and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution and pulse contour), temperature, mixed venous oxygen saturation, and central venous oxygen saturation),
- · respiratory (impedance respiration, airway gases (CO2, O2, N2O, and anesthetic agents), spirometry, gas exchange), and
- · neurophysiological status (including electroencephalography, Entropy, Bispectral Index (BIS), and neuromuscular transmission).
The CARESCAPE B850 can be a stand-alone monitor or interfaced to other devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
The CARESCAPE B850 is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ventricular tachycardia, ventricular tachycardia, and VT>2. The CARESCAPE B850 also shows alarms from other ECG sources.
The CARESCAPE B850 also provides other alarms, trends, snapshots and calculations, and can be connected to displays, printers and recording devices.
The CARESCAPE B850 is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
Contraindications for using the monitor
The CARESCAPE B850 is not intended for use in a controlled MR environment.
CARESCAPE B850 is a new version of a modular multi- parameter patient monitoring system. The monitor includes a separate 19-inch touchscreen display, the central processing unit (also called CPU), the CARESCAPE Software, and a module frame F5 or F7. CARESCAPE B850 is equipped with the ePort interface that supports use of PDM or CARESCAPE ONE patient data acquisition modules for patient monitoring. In addition, the F5 module frame has five module slots, and the F7 module frame has seven module slots where patient data acquisition modules (E-Module type), can be connected to perform patient monitoring. The CARESCAPE B850 includes features and subsystems that are optional or configurable.
This looks like a 510(k) summary for the GE Healthcare CARESCAPE B850 patient monitor. I will extract information related to the acceptance criteria and study that proves the device meets them.
Based on the provided text, the CARESCAPE B850 is a multi-parameter patient monitor. The 510(k) submission is for a new version with updated software and minor hardware modifications. The submission refers to a primary predicate device, also named CARESCAPE B850 (K191323), and additional predicate/reference devices for specific parameters (INVOS PM7100 and MASIMO RADICAL Y PULSE CO-OXIMETER).
The key takeaway is that the device did not require clinical studies to support substantial equivalence because it is a modified version of an already cleared device and incorporates previously cleared parameters. Therefore, the "study that proves the device meets the acceptance criteria" primarily refers to non-clinical bench testing.
Here's a breakdown of the requested information based on the provided text:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not explicitly present a table of acceptance criteria with corresponding performance metrics for the new CARESCAPE B850 compared to a specific threshold. Instead, it relies on the concept of substantial equivalence to a predicate device.
The "acceptance criteria" are implied to be that the performance of the new device is "as safe, as effective, and the performance to be substantially equivalent to the predicate device." The reported "device performance" is primarily that it passed various non-clinical tests.
Implied Acceptance Criteria (based on substantial equivalence concept):
Performance Aspect | Acceptance Criteria (Implied) | Reported Device Performance |
---|---|---|
Software | Meets specifications and validated as per design requirements. | Bench testing related to software design, development, verification, validation and traceability was conducted. |
Hardware | Meets specifications, including safety and compatibility. | Bench testing related to electromagnetic compatibility, electrical safety, environmental, and usability was conducted. |
Overall Safety & Effectiveness | As safe and effective as the predicate device (K191323). | The device is considered as safe, as effective, and its performance is substantially equivalent to the predicate device. |
Note: The document states that the fundamental function and operation of the proposed CARESCAPE B850 monitor are unchanged compared to its predicate (K191323), except for the addition of an E-musb Interface module and the capability to display previously cleared hemodynamic parameters from OEM devices (regional oxygen saturation and total hemoglobin concentration).
2. Sample Size Used for the Test Set and Data Provenance
- Sample Size for Test Set: Not explicitly stated. The document refers to "bench testing related to software, hardware and performance." This typically involves testing prototypes or production units, but a "sample size" in the context of patient data is not applicable here as no clinical studies were performed for this submission.
- Data Provenance: Not applicable, as no external data (e.g., patient data from a specific country, retrospective or prospective) was used for this 510(k) submission to demonstrate substantial equivalence. The testing was internal bench testing.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts
- Number of Experts: Not applicable. For bench testing of hardware and software, "ground truth" is typically established by engineering specifications, validated test protocols, and adherence to consensus standards, rather than expert clinical consensus on patient data.
- Qualifications of Experts: Not applicable.
4. Adjudication Method for the Test Set
- Adjudication Method: Not applicable. This concept applies to clinical studies where discrepancies in observations or diagnoses need to be resolved. For bench testing, test results are typically compared against predefined specifications.
5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study Was Done, If So, What Was the Effect Size of How Much Human Readers Improve with AI vs Without AI Assistance
- MRMC Study: No. The device is a multi-parameter patient monitor, not an AI-assisted diagnostic tool that would typically involve human readers. The new version mostly focuses on software updates, minor hardware changes, and display of previously cleared parameters from other OEM devices.
6. If a Standalone (i.e., Algorithm Only Without Human-in-the-Loop Performance) Was Done
- Standalone Performance: The core functionality of the device (e.g., ECG, arrhythmia detection, various physiological measurements) operates in a "standalone" fashion in that the algorithms process patient data collected by the sensors. The document doesn't detail specific "algorithm-only" performance metrics as would be seen for a novel AI algorithm. Instead, it relies on the previous clearance of the predicate device and the fact that the algorithms (like EK-Pro arrhythmia detection algorithm V14) are identical. The newly added parameters (regional oxygen saturation and total hemoglobin concentration) are sourced from OEM devices that would have their own standalone performance data from their original clearances.
7. The Type of Ground Truth Used
- Type of Ground Truth: For the non-clinical bench testing, the ground truth would be the engineering specifications of the device and adherence to relevant consensus standards (e.g., for electromagnetic compatibility, electrical safety, environmental performance). For the physiological parameters, the "ground truth" for the algorithms (e.g., arrhythmia detection) was established during the development and clearance of the predicate device (K191323) and the OEM devices for rSO2 and SpHb.
8. The Sample Size for the Training Set
- Sample Size for Training Set: Not applicable. As this is not an AI/ML device that requires a distinct "training set" for model development for this 510(k) submission, this information is not relevant here. The update involves existing algorithms and integration of existing cleared parameters.
9. How the Ground Truth for the Training Set Was Established
- How Ground Truth for Training Set Was Established: Not applicable, for the same reason as point 8.
Ask a specific question about this device
(183 days)
cardiac (incl. cardiotachometer & rate alarm) 21 CFR 870.1025 detector and alarm, arrhythmia 21 CFR 870.1100
The CARESCAPE B450 is a multi-parameter patient monitor intended for use in multiple areas and intrahospital transport within a professional healthcare facility.
The CARESCAPE B450 is intended for use on adult, pediatric, and neonatal patients and on one patient at a time. The CARESCAPE B450 is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution and pulse contour), temperature, mixed venous oxygen saturation, and central venous oxygen saturation),
· respiratory (impedance respiration, airway gases (CO2, O2, N2O, and anesthetic agents), spirometry, gas exchange), and
· neurophysiological status (including electroencephalography, Entropy, Bispectral Index (BIS), and neuromuscular transmission).
The CARESCAPE B450 can be a stand-alone monitor or interfaced to other devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
The CARESCAPE B450 is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ventricular tachycardia, ventricular tachycardia, and VT>2. The CARESCAPE B450 also shows alarms from other ECG sources.
The CARESCAPE B450 also provides other alarms, trends, snapshots and calculations, and can be connected to displays, printers and recording devices.
The CARESCAPE B450 is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility
CARESCAPE B450 is a new version of a portable multiparameter patient monitoring system. The CARESCAPE B450 includes the monitor itself with built-in CPU, power unit, a 12 inch touch display, the CARESCAPE Software and one or two batteries. CARESCAPE B450 is equipped with an ePort interface that supports use of PDM or CARESCAPE ONE patient data acquisition modules for patient monitoring. CARESCAPE B450 is also equipped with one module slot where patient data acquisition modules (E-Modules), can be connected to perform patient monitoring. The CARESCAPE B450 includes features and subsystems that are optional or configurable.
Based on the provided text, here's an analysis of the acceptance criteria and the study that proves the device meets them:
The document describes the CARESCAPE B450, a multiparameter patient monitor. This submission is for a new version of the device, primarily focusing on updated software and minor hardware modifications.
The document does not contain details about specific acceptance criteria for performance metrics (e.g., sensitivity, specificity, accuracy for arrhythmia detection) or a study proving the device meets those criteria with statistical significance. Instead, it primarily focuses on demonstrating substantial equivalence to a predicate device (K191249 CARESCAPE B450) and compliance with general safety and performance standards through non-clinical testing.
Here's a breakdown of the requested information based on the available text:
-
A table of acceptance criteria and the reported device performance
This information is not explicitly provided in the document. The submission aims to show that the new CARESCAPE B450, with its updated software and minor hardware, is "substantially equivalent" to its predicate device. This implies that its performance is expected to meet the same standards as the predicate, but specific performance metrics and acceptance thresholds for those metrics are not detailed.
-
Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
This information is not provided. The document states that "Bench testing related to software, hardware and performance including applicable consensus standards was conducted on the CARESCAPE B450, demonstrating the design meets the specifications." It also notes that "The subject of this premarket submission, CARESCAPE B450 did not require clinical studies to support substantial equivalence." This indicates that the primary validation was through non-clinical bench testing, not through studies on patient data.
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not provided. As clinical studies were not required and the validation was primarily non-clinical bench testing, the concept of "ground truth" derived from expert consensus on patient data (as would be typical for AI/ML performance studies) is not applicable or described in this document.
-
Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not provided. Since no clinical studies or evaluations of diagnostic performance against a "ground truth" established by experts on a test set are detailed, adjudication methods are not mentioned.
-
If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
No MRMC comparative effectiveness study was done or reported. The device is a patient monitor with arrhythmia detection, not an AI-assisted diagnostic tool for human readers in the context of an MRMC study.
-
If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
The document states that "Bench testing related to software, hardware and performance... was conducted," implying that the device's inherent functional performance was tested. The phrase "algorithm only" isn't explicitly used, but the testing would effectively assess the device's standalone operation. However, no specific performance metrics (like those one would expect for an AI algorithm, e.g., sensitivity/specificity for specific arrhythmias) are reported. The device features "EK-Pro arrhythmia detection algorithm EK-Pro V14", and its performance is assumed to be equivalent to the predicate using the same algorithm version.
-
The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
For the non-clinical bench testing, the "ground truth" would likely be based on established engineering specifications, simulated physiological signals, and validated test protocols inherent to medical device performance testing, rather than expert consensus, pathology, or outcomes data from human subjects. This type of detail is not further elaborated in the document.
-
The sample size for the training set
This information is not provided. As the submission is for a new version of an existing device primarily involving software updates and minor hardware changes, and the algorithm (EK-Pro V14) itself is listed as "Identical" to the predicate, details about a training set for a new or significantly retrained algorithm are not discussed.
-
How the ground truth for the training set was established
This information is not provided, for the same reasons as point 8.
Ask a specific question about this device
Page 1 of 15