Search Results
Found 1 results
510(k) Data Aggregation
(134 days)
Indications for Use for CARESCAPE Canvas 1000:
CARESCAPE Canvas 1000 is a multi-parameter patient monitor intended for use in multiple areas within a professional healthcare facility.
CARESCAPE Canvas 1000 is intended for use on adult, pediatric, and neonatal patients one patient at a time.
CARESCAPE Canvas 1000 is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic analysis and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution and pulse contour), temperature, mixed venous oxygen saturation, and central venous oxygen saturation),
· respiratory (impedance respiration, airway gases (CO2, O2, N2O, and anesthetic agents), spirometry, gas exchange), and
· neurophysiological status (including electroencephalography, Entropy, Bispectral Index (BIS), and neuromuscular transmission).
CARESCAPE Canvas 1000 is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, irregular, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ ventricular tachycardia, ventricular tachycardia, and VT>2. CARESCAPE Canvas 1000 also shows alarms from other ECG sources.
CARESCAPE Canvas 1000 also provides other alarms, trends, snapshots and events, and calculations and can be connected to displays, printers and recording devices.
CARESCAPE Canvas 1000 can interface to other devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
CARESCAPE Canvas 1000 is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
CARESCAPE Canvas 1000 is not intended for use in an MRI environment.
Indications for Use for CARESCAPE Canvas Smart Display:
CARESCAPE Canvas Smart Display is a multi-parameter patient monitor intended for use in multiple areas within a professional healthcare facility.
CARESCAPE Canvas Smart Display is intended for use on adult, pediatric, and neonatal patients one patient at a time.
CARESCAPE Canvas Smart Display is indicated for monitoring of:
· hemodynamic (including ECG, ST segment, arrhythmia detection, ECG diagnostic analysis and measurement, invasive pressure, non-invasive blood pressure, pulse oximetry, regional oxygen saturation, total hemoglobin concentration, cardiac output (thermodilution), and temperature, and · respiratory (impedance respiration, airway gases (CO2)
CARESCAPE Canvas Smart Display is able to detect and generate alarms for ECG arrhythmias: atrial fibrillation, accelerated ventricular rhythm, asystole, bigeminy, bradycardia, ventricular couplet, irregular, missing beat, multifocal premature ventricular contractions (PVCs), pause, R on T, supra ventricular tachycardia, trigeminy, ventricular bradycardia, ventricular fibrillation/ ventricular tachycardia, ventricular tachycardia, and VT>2. CARESCAPE Canvas Smart Display also shows alarms from other ECG sources.
CARESCAPE Canvas Smart Display also provides other alarms, trends, snapshots and events. CARESCAPE Canvas Smart Display can use CARESCAPE ONE or CARESCAPE Patient Data Module (PDM) as patient data acquisition devices. It can also be connected to other monitors for remote viewing and to data management software devices via a network.
CARESCAPE Canvas Smart Display is intended for use under the direct supervision of a licensed healthcare practitioner, or by personnel trained in proper use of the equipment in a professional healthcare facility.
CARESCAPE Canvas Smart Display is not intended for use in an MRI environment.
Indications for Use for CARESCAPE Canvas D19:
CARESCAPE Canvas D19 is intended for use as a secondary display with a compatible host device. It is intended for displaying measurement and parametric data from the host device and providing visual and audible alarms generated by the host device.
CARESCAPE Canvas D19 enables controlling the host device, including starting and discharging a patient case, changing parametric measurement settings, changing alarm limits and disabling alarms.
Using CARESCAPE Canvas D19 with a compatible host device enables real-time multi-parameter patient monitoring and continuous evaluation of the patient's ventilation, oxygenation, hemodynamic, circulation, temperature, and neurophysiological status.
Indications for Use for F2 Frame; F2-01:
The F2 Frame, module frame with two slots, is intended to be used with compatible GE multiparameter patient monitors to interface with two single width parameter modules, CARESCAPE ONE with a slide mount, and recorder.
The F2 Frame is intended for use in multiple areas within a professional healthcare facility. The F2 Frame is intended for use under the direct supervision of a licensed healthcare practitioner, or by person trained in proper use of the equipment in a professional healthcare facility.
The F2 Frame is intended for use on adult, pediatric, and neonatal patients and on one patient at a time.
Hardware and software modifications carried out on the legally marketed predicate device CARESCAPE B850 V3.2, resulted in new products CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display, along with the CARESCAPE Canvas D19 and F2 Frame (F2-01) all of which are the subject of this submission.
CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display are new modular multi-parameter patient monitoring systems. In addition, the new devices CARESCAPE Canvas D19 and F2 Frame (F2-01) are a new secondary display and new module frame respectively.
The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display patient monitors incorporates a 19-inch display with a capacitive touch screen and the screen content is user-configurable. They have an integrated alarm light and USB connectivity for other user input devices. The user interface is touchscreen-based and can be used also with a mouse and a keyboard or a remote controller. The system also includes the medical application software (CARESCAPE Software version 3.3). The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display include features and subsystems that are optional or configurable.
The CARESCAPE Canvas 1000 and CARESCAPE Canvas Smart Display are compatible with the CARESCAPE Patient Data Module and CARESCAPE ONE acquisition device via F0 docking station (cleared separately).
For the CARESCAPE Canvas 1000 patient monitor, the other type of acquisition modules, E-modules (cleared separately) can be chosen based on care requirements and patient needs. Interfacing subsystems that can be used to connect the E-modules to the CARESCAPE Canvas 1000 include a new two-slot parameter module F2 frame (F2-01), a five-slot parameter module F5 frame (F5-01), and a seven-slot parameter module F7 frame (F7-01).
The CARESCAPE Canvas 1000 can also be used together with the new secondary CARESCAPE Canvas D19 display. The CARESCAPE Canvas D19 display provides a capacitive touch screen, and the screen content is user configurable. The CARESCAPE Canvas D19 display integrates audible and visual alarms and provides USB connectivity for other user input devices.
Please note that the provided text is a 510(k) summary for a medical device and primarily focuses on demonstrating substantial equivalence to a predicate device through non-clinical bench testing and adherence to various standards. It explicitly states that clinical studies were not required to support substantial equivalence. Therefore, some of the requested information regarding clinical studies, human expert involvement, and ground truth establishment from patient data will likely not be present.
Based on the provided text, here's the information regarding acceptance criteria and device performance:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not present a formal table of specific, quantifiable acceptance criteria alongside reported performance data. Instead, it states that various tests were conducted to demonstrate that the design meets specifications and complies with consensus standards. The performance is generally reported as "meets the specifications," "meets the EMC requirements," "meets the electrical safety requirements," and "fulfilled through compliance."
However, we can infer some "acceptance criteria" based on the standards and tests mentioned:
Category | Inferred Acceptance Criteria (Based on Compliance) | Reported Device Performance |
---|---|---|
General Performance | Device design meets specifications relevant to its intended use (multi-parameter patient monitoring, ECG, ST segment, arrhythmia detection, various physiological measurements). | "demonstrating the design meets the specifications" |
Hardware | Hardware functions as intended and meets safety/performance standards. | "Hardware Bench Testing conducted" |
Alarms | Alarm system (classification, notification, adjustment, critical limits, On/Off, audio silencing) functions correctly and meets relevant standards (IEC 60601-1-8). | "Alarms Bench Testing conducted." "Alarm management core functionalities: Classification and notification of alarms, Adjustment of alarm settings, Possibility to set critical alarm limits, Alarm On/Off functionality and audio silencing - Identical (to predicate)." "meets the specifications listed in the requirements." "Additional data is provided for compliance to: IEC 60601-1-8: 2020..." |
EMC | Meets Electromagnetic Compatibility (EMC) requirements as per IEC 60601-1-2 Edition 4.1 2020 and FDA guidance. | "meet the EMC requirements described in IEC 60601-1-2 Edition 4.1 2020." "evaluated for electromagnetic compatibility and potential risks from common emitters." |
Electrical Safety | Meets electrical safety requirements as per IEC 60601-1:2020 "Edition 3.2" and 21 CFR Part 898, § 898.12 (electrode lead wires and cables). | "meet the electrical safety requirements of IEC 60601-1:2020 'Edition 3.2'." "performed by a recognized independent and Certified Body Testing Laboratory (CBTL)." "fulfilled through compliance with IEC 60601-1:2020... clause 8.5.2.3." |
Specific Parameters | Meets performance standards for various physiological measurements (ECG, ST segment, NIBP, SpO2, temp, etc.) as detailed by specific IEC/ISO standards (e.g., IEC 60601-2-25, IEC 60601-2-27, IEC 80601-2-30, ISO 80601-2-55, etc.). Includes the EK-Pro arrhythmia detection algorithm performing equivalently to the predicate. | "Additional data is provided for compliance to: IEC 60601-2-25:2011, IEC 60601-2-27:2011, IEC 80601-2-30: 2018, IEC 60601-2-34: 2011, IEC 80601-2-49: 2018, ISO 80601-2-55: 2018, ISO 80601-2-56: 2017+AMD1:2018, ISO 80601-2-61: 2017, IEC 80601-2-26:2019, IEC 60601-2-40: 2016, ANSI/AAMI EC57:2012." "EK-Pro arrhythmia detection algorithm: EK-Pro V14 - Identical (to predicate)." |
Environmental | Operates and stores safely within specified temperature, humidity, and pressure ranges. Withstands mechanical stress, fluid ingress, and packaging requirements. | "confirmed to meet the specifications listed in the requirements." "Environmental (Mechanical, and Thermal Safety) testing" conducted. "Fluid ingress." "Packaging Bench Testing." |
Reprocessing | Reprocessing efficacy validation meets acceptance criteria based on documented instructions and worst-case devices/components, following FDA guidance "Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling." | "Reprocessing efficacy validation has been conducted." "The reprocessing efficacy validation met the acceptance criteria for the reprocessing efficacy validation tests." |
Human Factors/Usability | Meets usability requirements as per IEC 60601-1-6: 2020 and IEC 62366-1: 2020, and complies with FDA guidance "Applying Human Factors and Usability Engineering to Medical Devices." | "Summative Usability testing has been concluded with 16 US Clinical, 16 US Technical and 15 US Cleaning users." "follows the FDA Guidance for Industry and Food and Drug Administration Staff 'Applying Human Factors and Usability Engineering to Medical Devices'." |
Software | Complies with FDA software guidance documents (e.g., Content of Premarket Submissions for Software, General Principles of Software Validation, Off-The-Shelf Software Use) and software standards IEC 62304: 2015 and ISO 14971:2019, addressing patient safety, security, and privacy risks. | "follows the FDA software guidance documents as outlined in this submission." "Software testing was conducted." "Software for this device is considered as a 'Major' level of concern." "Software standards IEC 62304: 2015 ... and risk management standard ISO 14971:2019 ... were also applied." "patient safety, security, and privacy risks have been addressed." |
2. Sample Size Used for the Test Set and Data Provenance
- Test Set Sample Size: The document implies that the "test set" for performance evaluation was the device itself and its components as described ("CARESCAPE Canvas 1000, CARESCAPE Canvas Smart Display, CARESCAPE Canvas D19 and F2 Frame (F2-01)").
- For usability testing, "16 US Clinical, 16 US Technical and 15 US Cleaning users" were involved.
- Data Provenance: The testing described is non-clinical bench testing.
- For usability testing, the users were located in the US.
- No direct patient data or retrospective/prospective study data is mentioned beyond the device's inherent functional characteristics being tested according to standards.
3. Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications of Those Experts
- Number of Experts: Not applicable in the context of establishing "ground truth" for patient data, as no clinical studies with patient data requiring expert adjudication were conducted or reported to establish substantial equivalence.
- For usability testing, "16 US Clinical, 16 US Technical and 15 US Cleaning users" participated. Their specific qualifications (e.g., years of experience, types of healthcare professionals) are not detailed in this summary.
4. Adjudication Method for the Test Set
- Not applicable, as no clinical studies with patient data requiring adjudication were conducted or reported.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, and the Effect Size of How Much Human Readers Improve with AI vs. Without AI Assistance
- No MRMC study was done, as the document explicitly states: "The subjects of this premarket submission... did not require clinical studies to support substantial equivalence." The device is a patient monitor, not an AI-assisted diagnostic tool for image interpretation or similar.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done
- The performance evaluations mentioned (e.g., for general device functionality, electrical safety, EMC, specific parameter measurements like ECG/arrhythmia detection) represent the device's standalone performance in a bench setting, demonstrating its adherence to established standards and specifications. There is no separate "algorithm only" performance study reported distinctly from integrated device testing. The EK-Pro V14 algorithm, which is part of the device, is noted as "identical" to the predicate, implying its performance characteristics are maintained.
7. The Type of Ground Truth Used
- For the non-clinical bench testing, the "ground truth" was established by conformance to internationally recognized performance and safety standards (e.g., IEC, ISO, AAMI/ANSI) and the engineering specifications of the device/predicate. These standards define the acceptable range of performance for various parameters.
- For usability testing, the "ground truth" was the successful completion of tasks and overall user feedback/satisfaction as assessed by human factors evaluation methods.
- No ground truth from expert consensus on patient data, pathology, or outcomes data was used, as clinical studies were not required.
8. The Sample Size for the Training Set
- Not applicable. This document describes a 510(k) submission for a patient monitor, not a machine learning or AI model trained on a dataset. The device contains "Platform Software that has been updated from version 3.2 to version 3.3," but this refers to traditional software development and not a machine learning model requiring a "training set" in the AI sense.
9. How the Ground Truth for the Training Set Was Established
- Not applicable, as there is no mention of a "training set" in the context of machine learning. The software development likely followed conventional software engineering practices, with ground truth established through design specifications, requirements, and verification/validation testing.
Ask a specific question about this device
Page 1 of 1