Search Results
Found 2 results
510(k) Data Aggregation
(90 days)
OZARK Cervical Plate System is indicated for use in anterior screw fixation to the cervical spine (C2-T1) for the following indications: degenerative disc disease (DDD) (defined as neck pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies), spondylisthesis, trauma(including fractures), spinal stenosis and tumors (primary and metastatic), failed previous fusion (Pseudarthrosis) and deformity (defined as scoliosis, kyphosis or lordosis).
PYRENEES and BLUE RIDGE Cervical Plate System are indicated for use in anterior screw fixation to the cervical spine (C2-T1) for the following indications: degenerative disc disease (DDD) (defined as neck pain of discogenic origin with degeneration of the disc confirmed by history and radioaraphic studies), spondylolisthesis, trauma (including fractures), spinal stenosis and tumors (primary and metastatic), failed previous fusions (pseudarthrosis) and deformity (defined as scoliosis, kyphosis or lordosis).
The EVEREST Spinal System may be used in conjunction with the RANGE® (MESA® and DENALI®) Spinal Systems, all of which are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the EVEREST Spinal System may also be used for the same indications as an adjunct to fusion. When used for posterior non-cervical pedicle screw fixation in pediatric patients the EVEREST Spinal System implants are indicated as an adjunct to fusion to treat adolescent idiopathic scolosis. These devices are to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
RANGE (MESA and DENALI) and ARI are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the Range Spinal System may also be used for the same indications as an adjunct to fusion. Except for the ARI staples, the Range Spinal System is indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis when used for posterior noncervical fixation in pediatric patients. The Range Spinal System for pediatric use is intended to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The Caspian OCT/MESA Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
The Caspian OCT/MESA Mini/DENALI Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini/DENALI Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/DENALI Mini Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
RANGE (MESA and DENALI) and ARI are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the Range Spinal System may also be used for the same indications as an adjunct to fusion. Except for the ARI staples, the Range Spinal System is indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis when used for posterior noncervical fixation in pediatric patients. The Range Spinal System for pediatric use is intended to be used with autograft and/or allograff. Pediatric pedicle screw fixation is limited to a posterior approach.
The Caspian OCT/MESA Mini/DENALI Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini/DENALI Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/DENALI Mini Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
The YUKON OCT Spinal System is intended to provide immobilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/ or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The YUKON OCT Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the YUKON OCT Spinal System may be connected to Everest Spinal System components via the rod to rod connectors or transition rods.
The Xia® 3 Spinal System is intended for use in the non-cervical spine. When used as an anterior/ anterolateral and posterior, non-cervical pedicle and non-pedicle fixation system, the Xia® 3 Spinal System is intended to provide additional support during fusion using auto graft or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities or deformities: Degenerative Disc Disease (as defined by back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), Spondylolisthesis, Trauma (i.e. fracture of dislocation), Spinal stenosis, Curvatures (i.e., scoliosis, kyphosis, and/or lordosis), Tumor, Pseudarthrosis, Failed previous fusion. The 5.5 mm rods from the Stryker Spine Radius™ Spinal System and 6.0 mm Vitallium rods from the Xia® Spinal System are intended to be used with the other components of the Xia® 3 Spinal System. When used for posterior, non-cervical, pedicle screw fixation in pediatric patients, the Xia® 3 Spinal System implants are indicated as an adjunct to fusion to treat progressive spinal deformities (i.e., scoliosis, kyphosis, or lordosis) including idiopathic scoliosis, neuromuscular scoliosis, and congenital scoliosis. Additionally, the Xia® 3 Spinal System is intended to treat pediatric patients diagnosed with: spondylolisthesis/spondylolysis, fracture caused by tumor and/or trauma, pseudarthrosis, and/or failed previous fusion. This system is intended to be used with autograft and/ or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The EVEREST Spinal System may be used in conjunction with the RANGE® (MESA® and DENALI®) Spinal Systems, all of which are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e., scoliosis, kyphosis); tumor; pseudarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the EVEREST Spinal System may also be used for the same indications as an adjunct to fusion. When used for posterior non-cervical pedicle screw fixation in pediatric patients the EVEREST Spinal System implants are indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis. These devices are to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The CASCADIA lumbar implants are intervertebral body fusion devices indicated for use with autograft and/or allogenic bone graft comprised of cancellous and/or corticocancellous bone graft when used as an adjunct to fusion in patients with degenerative disc disease (DDD) at one level or two contiquous levels from L2 to S1. DDD is defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies. The DDD patients may also have up to Grade I spondylolisthesis or retrolisthesis at the involved level(s). These patients should be skeletally mature and have six months of nonoperative therapy. Additionally, the CASCADIA lumbar implants can be used as an adjunct to fusion in patients diagnosed with degenerative scoliosis. CASCADIA lumbar implants are intended to be used with supplemental spinal fixation systems that have been cleared for use in the lumbosacral spine. The CASCADIA hyperlordotic lateral lumbar implants (≥ 22°), are intended for levels L2-L5 and are to be used with CAYMAN United plates in addition to posterior supplemental fixation. The CASCADIA non-hyperlordotic lateral lumbar implants may optionally be used with CAYMAN United plates, in addition to supplemental spinal fixation systems. The CASCADIA cervical implants are intervertebral body fusion devices indicated for use with autograft and/or allogenic bone graft comprised of cancellous and/or corticocancellous bone graft when used as an adjunct to fusion in patients with cervical disc disease (DDD) at one level or two contiguous levels from C2 to T1. These patients should be skeletally mature and have had six weeks of non-operative treatment. The CASCADIA cervical implants are also to be used with supplemental fixation; the hyperlordotic CASCADIA cervical implants (i.e., ≥ 10°) are required to be used with an anterior cervical plate as the form of supplemental fixation.
The CAYMAN Buttress Plates are intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications. The CAYMAN Thoracolumbar Plates are indicated for use via the lateral or anterolateral surgical approach in the treatment of thoracic and thoracolumbar (T1-L5) spine and for use as an anteriorly placed supplemental fixation device for the lumbosacral level below the bifurcation of the vascular structures (L5-S1). The Cayman Thoracolumbar Plate System is intended to provide temporary stabilization during fusion using autograph or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities and deformities: a) degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), b) pseudoarthrosis, c) spondylolysis, d) spondylolisthesis, e) fracture, f) neoplastic disease, g) unsuccessful previous fusion surgery, h)lordotic deformities of the spine, i) thoracolumbar or lumbar scoliosis, j) deformity (i.e., scoliosis, kyphosis, and/or lordosis) associated with deficient posterior elements such as that resulting from laminectomy.
The CAYMAN Buttress Plates are intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications. The CAYMAN Thoracolumbar Plates are indicated for use via the lateral or anterolateral surgical approach in the treatment of thoracic and thoracolumbar (T1-L5) spine and for use as an anteriorly placed supplemental fixation device for the lumbosacral level below the bifurcation of the vascular structures (L5-S1). The Cayman Thoracolumbar Plate System is intended to provide temporary stabilization during fusion using autograph or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities and deformities: a) degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), b) pseudoarthrosis, c) spondylolysis, d) spondylolisthesis, e) fracture, f) neoplastic disease, g) unsuccessful previous fusion surgery, h )lordotic deformities of the spine, i) thoracolumbar or lumbar scoliosis, j) deformity (i.e., scoliosis, kyphosis, and/or lordosis) associated with deficient posterior elements such as that resulting from laminectomy.
The CAYMAN LP Plate System is intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications.
The previously cleared devices consist of a variety of plate and screw systems designed to provide support across implanted levels in the cervical, thoracolumbar, and lumbosacral spine until fusion is achieved. The primary purpose of this submission is to update previously cleared MR safety information, establish an MR Conditional labeling claim, update cleaning, disinfection and sterilization instructions.
This appears to be a 510(k) summary for various spinal plate and screw systems. The document focuses on establishing substantial equivalence to predicate devices, primarily through updating MRI safety information, cleaning/disinfection/sterilization instructions, and labeling.
Unfortunately, this document does not contain the information requested about acceptance criteria and study results for an AI/software-based medical device. The listed devices are physical implants, and the "performance data" section refers to MR compatibility testing, not the performance of an AI algorithm in classification or detection tasks.
Therefore, I cannot extract the following information from the provided text:
- A table of acceptance criteria and the reported device performance (for an AI/software device)
- Sample size used for the test set and the data provenance
- Number of experts used to establish the ground truth for the test set and the qualifications of those experts
- Adjudication method for the test set
- If a multi-reader multi-case (MRMC) comparative effectiveness study was done
- If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- The type of ground truth used
- The sample size for the training set
- How the ground truth for the training set was established
The document primarily addresses the safety and efficacy of physical spinal implants based on their design, materials, and established predicate devices, and MRI compatibility. It is not about an AI-powered diagnostic or therapeutic device.
Ask a specific question about this device
(29 days)
RANGE /DENALI/MESA and SMALL STATURE and ARI are cleared for the following indications: Non-cervical fixation as an adjunct to fusion for the following indications: degenerative disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stcnosis: curvatures (i.e. scoliosis, kyphosis and/or lordosis); tumor: pscudarthrosis: and/or failed previous fusion.
Except for hooks, when used as an anterolatcral thoracic/lumbar system the Range Spinal System may also be used for the same indications as an adjunct to fusion.
Except for the ARI staples, the Range Spinal System is indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis when used for posterior noncervical fixation in pediatric patients. The Range Spinal System for pediatric use is intended to be used with autograft. Pediatric pediatric pediale screw fixation is limited to a posterior approach.
The Range Spinal System is a top-loading, multiple component, posterior (thoracic-lumbar) spinal fixation system which consist of pedicle screws, rods, locking set screws, hooks. rod connectors and transverse connectors.
Materials: The devices are manufactured from Titanium Alloy and Cobalt Chrome per ASTM and ISO standards.
Function: The system functions as an adjunct to fusion to provide immobilization and stabilization of the posterior thoracic and lumbar spine.
The purpose of this submission is to add 6.35mm implants to the system.
This FDA submission describes a spinal fixation system, not an AI/ML powered device. As such, the typical acceptance criteria and study designs for AI/ML devices (like accuracy, sensitivity, specificity, and MRMC studies) are not applicable.
The submission focuses on establishing substantial equivalence to previously marketed devices based on design features and material properties. The primary way this device meets its "acceptance criteria" is by demonstrating it is as safe and effective as existing, legally marketed spinal systems.
Here's an analysis based on the provided document, addressing the original prompt's categories where applicable for a non-AI device:
1. Table of Acceptance Criteria and Reported Device Performance
Acceptance Criteria Category (for this type of device) | Reported Device Performance (from the document) |
---|---|
Material Composition Conformity | Manufactured from Titanium Alloy and Cobalt Chrome per ASTM and ISO standards. |
Mechanical Performance (Static Compression Bending) | Worst case components previously tested in static compression bending in accordance with ASTM F1717. Proposed implants determined not to represent a new worst case. |
Mechanical Performance (Static Torsion) | Worst case components previously tested in static torsion in accordance with ASTM F1717. Proposed implants determined not to represent a new worst case. |
Mechanical Performance (Dynamic Compression) | Worst case components previously tested in dynamic compression in accordance with ASTM F1717. Proposed implants determined not to represent a new worst case. |
Design Feature Substantial Equivalence | Design features of components were compared to predicate devices and found to be substantially the same. |
Intended Use Substantial Equivalence | Indications for use are the same as predicate devices; the submission specifically adds 6.35mm implants to the existing system. |
2. Sample size used for the test set and the data provenance
- Sample Size: Not applicable in the context of clinical "test sets" for AI/ML performance. For mechanical testing, the "worst case components" were selected for testing, implying a representative sample of components or configurations were tested to cover the range of mechanical properties. The specific number of components or implants tested is not provided in this summary.
- Data Provenance: Not applicable in the context of clinical data provenance. The mechanical test data would be generated in a laboratory setting (likely within the company or a certified testing facility).
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
- Not applicable as this is a mechanical device, not an AI/ML diagnostic or prognostic tool requiring expert interpretation of outputs to establish ground truth. Substantial equivalence for this device is based on technical comparisons and mechanical testing against recognized standards.
4. Adjudication method for the test set
- Not applicable. There is no "adjudication" in the sense of reconciling clinical interpretations for this type of device. The determination of "worst case" for mechanical testing would be an engineering assessment.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- No, a multi-reader multi-case (MRMC) comparative effectiveness study was not done. This type of study is specifically for evaluating the impact of AI on human reader performance, which is not relevant for a spinal implant.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- No, a standalone algorithm performance evaluation was not done. This device is a physical medical implant, not a software algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
- For mechanical testing, the "ground truth" is defined by established engineering standards (ASTM F1717) and successful performance within those standards, demonstrating adequate strength and durability.
- For substantial equivalence, the "ground truth" is the established safety and effectiveness profile of the predicate devices.
8. The sample size for the training set
- Not applicable. This device does not use an AI/ML "training set."
9. How the ground truth for the training set was established
- Not applicable. As there is no AI/ML component, there is no "training set" or ground truth for it.
Summary regarding the device's "acceptance":
The Range Spinal System gained FDA clearance (K141147) by demonstrating substantial equivalence to predicate devices already on the market. This means the FDA concluded that the new device is as safe and effective as the existing devices. The key elements for this determination were:
- Design and Material Comparison: The new components (6.35mm implants) were found to be "substantially the same" in design features and materials (Titanium Alloy and Cobalt Chrome per ASTM/ISO standards) as predicate devices.
- Mechanical Performance: The "worst case components" of the system were previously tested against established standards (ASTM F1717) for static compression bending, static torsion, and dynamic compression. The proposed new implants were determined by engineering analysis not to represent a "new worst case," implying they perform comparably or better than previously tested components and meet the required mechanical integrity.
- Intended Use: The indications for use are consistent with those of the predicate devices.
Essentially, the "study" for this device was a combination of engineering analysis and mechanical testing against industry standards, alongside a direct comparison of its technical characteristics and intended use to already cleared predicate devices.
Ask a specific question about this device
Page 1 of 1