Search Results
Found 2 results
510(k) Data Aggregation
(90 days)
OZARK Cervical Plate System is indicated for use in anterior screw fixation to the cervical spine (C2-T1) for the following indications: degenerative disc disease (DDD) (defined as neck pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies), spondylisthesis, trauma(including fractures), spinal stenosis and tumors (primary and metastatic), failed previous fusion (Pseudarthrosis) and deformity (defined as scoliosis, kyphosis or lordosis).
PYRENEES and BLUE RIDGE Cervical Plate System are indicated for use in anterior screw fixation to the cervical spine (C2-T1) for the following indications: degenerative disc disease (DDD) (defined as neck pain of discogenic origin with degeneration of the disc confirmed by history and radioaraphic studies), spondylolisthesis, trauma (including fractures), spinal stenosis and tumors (primary and metastatic), failed previous fusions (pseudarthrosis) and deformity (defined as scoliosis, kyphosis or lordosis).
The EVEREST Spinal System may be used in conjunction with the RANGE® (MESA® and DENALI®) Spinal Systems, all of which are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the EVEREST Spinal System may also be used for the same indications as an adjunct to fusion. When used for posterior non-cervical pedicle screw fixation in pediatric patients the EVEREST Spinal System implants are indicated as an adjunct to fusion to treat adolescent idiopathic scolosis. These devices are to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
RANGE (MESA and DENALI) and ARI are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the Range Spinal System may also be used for the same indications as an adjunct to fusion. Except for the ARI staples, the Range Spinal System is indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis when used for posterior noncervical fixation in pediatric patients. The Range Spinal System for pediatric use is intended to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The Caspian OCT/MESA Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
The Caspian OCT/MESA Mini/DENALI Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini/DENALI Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/DENALI Mini Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
RANGE (MESA and DENALI) and ARI are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e. scoliosis, kyphosis); tumor, pseudoarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the Range Spinal System may also be used for the same indications as an adjunct to fusion. Except for the ARI staples, the Range Spinal System is indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis when used for posterior noncervical fixation in pediatric patients. The Range Spinal System for pediatric use is intended to be used with autograft and/or allograff. Pediatric pedicle screw fixation is limited to a posterior approach.
The Caspian OCT/MESA Mini/DENALI Mini Spinal System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The Caspian OCT/MESA Mini/DENALI Mini Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the Caspian OCT/MESA Mini/DENALI Mini Spinal System may be connected to Range/MESA/DENALI Spinal System and Everest Spinal System components via the rod to rod connectors or transition rods.
The YUKON OCT Spinal System is intended to provide immobilization of spinal segments as an adjunct to fusion for the following acute and chronic instabilities of craniocervical junction, the cervical spine (C1 to C7) and the thoracic spine (T1-T3): traumatic spinal fractures and/ or traumatic dislocations; instability or deformity; failed previous fusions (e.g. pseudoarthrosis); tumors involving the cervical spine; and degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability. The YUKON OCT Spinal System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion. In order to achieve additional levels of fixation, the YUKON OCT Spinal System may be connected to Everest Spinal System components via the rod to rod connectors or transition rods.
The Xia® 3 Spinal System is intended for use in the non-cervical spine. When used as an anterior/ anterolateral and posterior, non-cervical pedicle and non-pedicle fixation system, the Xia® 3 Spinal System is intended to provide additional support during fusion using auto graft or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities or deformities: Degenerative Disc Disease (as defined by back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), Spondylolisthesis, Trauma (i.e. fracture of dislocation), Spinal stenosis, Curvatures (i.e., scoliosis, kyphosis, and/or lordosis), Tumor, Pseudarthrosis, Failed previous fusion. The 5.5 mm rods from the Stryker Spine Radius™ Spinal System and 6.0 mm Vitallium rods from the Xia® Spinal System are intended to be used with the other components of the Xia® 3 Spinal System. When used for posterior, non-cervical, pedicle screw fixation in pediatric patients, the Xia® 3 Spinal System implants are indicated as an adjunct to fusion to treat progressive spinal deformities (i.e., scoliosis, kyphosis, or lordosis) including idiopathic scoliosis, neuromuscular scoliosis, and congenital scoliosis. Additionally, the Xia® 3 Spinal System is intended to treat pediatric patients diagnosed with: spondylolisthesis/spondylolysis, fracture caused by tumor and/or trauma, pseudarthrosis, and/or failed previous fusion. This system is intended to be used with autograft and/ or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The EVEREST Spinal System may be used in conjunction with the RANGE® (MESA® and DENALI®) Spinal Systems, all of which are cleared for the following indications: Posterior non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies); spondylolisthesis; trauma (i.e., fracture or dislocation); spinal stenosis; curvatures (i.e., scoliosis, kyphosis); tumor; pseudarthrosis; and/or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/lumbar system the EVEREST Spinal System may also be used for the same indications as an adjunct to fusion. When used for posterior non-cervical pedicle screw fixation in pediatric patients the EVEREST Spinal System implants are indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis. These devices are to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
The CASCADIA lumbar implants are intervertebral body fusion devices indicated for use with autograft and/or allogenic bone graft comprised of cancellous and/or corticocancellous bone graft when used as an adjunct to fusion in patients with degenerative disc disease (DDD) at one level or two contiquous levels from L2 to S1. DDD is defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies. The DDD patients may also have up to Grade I spondylolisthesis or retrolisthesis at the involved level(s). These patients should be skeletally mature and have six months of nonoperative therapy. Additionally, the CASCADIA lumbar implants can be used as an adjunct to fusion in patients diagnosed with degenerative scoliosis. CASCADIA lumbar implants are intended to be used with supplemental spinal fixation systems that have been cleared for use in the lumbosacral spine. The CASCADIA hyperlordotic lateral lumbar implants (≥ 22°), are intended for levels L2-L5 and are to be used with CAYMAN United plates in addition to posterior supplemental fixation. The CASCADIA non-hyperlordotic lateral lumbar implants may optionally be used with CAYMAN United plates, in addition to supplemental spinal fixation systems. The CASCADIA cervical implants are intervertebral body fusion devices indicated for use with autograft and/or allogenic bone graft comprised of cancellous and/or corticocancellous bone graft when used as an adjunct to fusion in patients with cervical disc disease (DDD) at one level or two contiguous levels from C2 to T1. These patients should be skeletally mature and have had six weeks of non-operative treatment. The CASCADIA cervical implants are also to be used with supplemental fixation; the hyperlordotic CASCADIA cervical implants (i.e., ≥ 10°) are required to be used with an anterior cervical plate as the form of supplemental fixation.
The CAYMAN Buttress Plates are intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications. The CAYMAN Thoracolumbar Plates are indicated for use via the lateral or anterolateral surgical approach in the treatment of thoracic and thoracolumbar (T1-L5) spine and for use as an anteriorly placed supplemental fixation device for the lumbosacral level below the bifurcation of the vascular structures (L5-S1). The Cayman Thoracolumbar Plate System is intended to provide temporary stabilization during fusion using autograph or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities and deformities: a) degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), b) pseudoarthrosis, c) spondylolysis, d) spondylolisthesis, e) fracture, f) neoplastic disease, g) unsuccessful previous fusion surgery, h)lordotic deformities of the spine, i) thoracolumbar or lumbar scoliosis, j) deformity (i.e., scoliosis, kyphosis, and/or lordosis) associated with deficient posterior elements such as that resulting from laminectomy.
The CAYMAN Buttress Plates are intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications. The CAYMAN Thoracolumbar Plates are indicated for use via the lateral or anterolateral surgical approach in the treatment of thoracic and thoracolumbar (T1-L5) spine and for use as an anteriorly placed supplemental fixation device for the lumbosacral level below the bifurcation of the vascular structures (L5-S1). The Cayman Thoracolumbar Plate System is intended to provide temporary stabilization during fusion using autograph or allograft in skeletally mature patients in the treatment of the following acute and chronic instabilities and deformities: a) degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by patient history and radiographic studies), b) pseudoarthrosis, c) spondylolysis, d) spondylolisthesis, e) fracture, f) neoplastic disease, g) unsuccessful previous fusion surgery, h )lordotic deformities of the spine, i) thoracolumbar or lumbar scoliosis, j) deformity (i.e., scoliosis, kyphosis, and/or lordosis) associated with deficient posterior elements such as that resulting from laminectomy.
The CAYMAN LP Plate System is intended for use in spinal fusion procedures as a means to maintain the relative position of weak bony tissue such as allografts or autografts. The device is not intended for load bearing indications.
The previously cleared devices consist of a variety of plate and screw systems designed to provide support across implanted levels in the cervical, thoracolumbar, and lumbosacral spine until fusion is achieved. The primary purpose of this submission is to update previously cleared MR safety information, establish an MR Conditional labeling claim, update cleaning, disinfection and sterilization instructions.
This appears to be a 510(k) summary for various spinal plate and screw systems. The document focuses on establishing substantial equivalence to predicate devices, primarily through updating MRI safety information, cleaning/disinfection/sterilization instructions, and labeling.
Unfortunately, this document does not contain the information requested about acceptance criteria and study results for an AI/software-based medical device. The listed devices are physical implants, and the "performance data" section refers to MR compatibility testing, not the performance of an AI algorithm in classification or detection tasks.
Therefore, I cannot extract the following information from the provided text:
- A table of acceptance criteria and the reported device performance (for an AI/software device)
- Sample size used for the test set and the data provenance
- Number of experts used to establish the ground truth for the test set and the qualifications of those experts
- Adjudication method for the test set
- If a multi-reader multi-case (MRMC) comparative effectiveness study was done
- If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
- The type of ground truth used
- The sample size for the training set
- How the ground truth for the training set was established
The document primarily addresses the safety and efficacy of physical spinal implants based on their design, materials, and established predicate devices, and MRI compatibility. It is not about an AI-powered diagnostic or therapeutic device.
Ask a specific question about this device
(30 days)
The Everest Spinal System if used in conjunction with the Range (Mesa and Denali) Spinal Systems are:
Non-cervical, pedicle screw fixation devices for posterior stabilization as an adjunct to fusion for the following indications: Trauma ( i.e. fracture or dislocation ); spinal stenosis; curvatures (i.e. scoliosis, kyphosis; and/or lordosis); tumor; pseudoarthrosis; and failed previous fusion. It is also indicated for the treatment of severe spondylolisthesis ( grades 3 and 4 ) of the L5-S1 vertebra in skeletally mature patients receiving fusion by autogenous bone graft having implants attached to the lumbar and sacral spine ( L3 to sacrum) with removal of the implants after the attainment of a solid fusion.
Non-cervical, non-pedicle spinal fixation devices intended for posterior or anterolateral thoracolumbar screw stabilization as an adjunct to fusion for the following indications: degenerative disc disease (DDD ) (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies ); spondylolisthesis; trauma ( i.e. fracture or dislocation ); spinal stenosis; curvatures ( i.e. scoliosis, kyphosis; and/or lordosis); tumor; pseudoarthrosis; and failed previous fusion.
The Everest Spinal System is a top-loading, multiple component, posterior (thoracic-lumba) spinal fixation system which consists of pedicle screws, rods, locking set screws, and hooks. The purpose of this submission is to increase the range of screw sizes and to add connectors to enable use with Range Spinal System conponents.
Materials: The devices are manufactured from Titanium Alloy and Chrome per ASTM and ISO standards.
Function: The system functions as an adjunct to fusion to provide immobilization of the posterior thoracic and lumbar spine.
The provided 510(k) summary for the "Everest Spinal System" is for a physical medical device (spinal fixation system) and not for an AI/ML-driven device or software. Therefore, the questions regarding acceptance criteria, study design, ground truth, and reader studies that are typically applicable to AI/ML device performance evaluation do not directly apply in this context.
This summary focuses on demonstrating substantial equivalence to existing predicate devices based on mechanical performance and material compatibility.
Here's an analysis of the provided information, framed as closely as possible to your request, but highlighting the differences for a physical device:
Acceptance Criteria and Device Performance (for a physical medical device)
Acceptance Criteria Category | Specific Criteria | Reported Device Performance |
---|---|---|
Mechanical Performance | - Static Compression Strength (referencing ASTM F1717) | "The modified Everest Spinal System constructs performed equally to or better than the predicates in static compression..." |
Mechanical Performance | - Static Torsion Strength (referencing ASTM F1717) | "The modified Everest Spinal System constructs performed equally to or better than the predicates in... static torsion..." |
Mechanical Performance | - Dynamic Compression Strength (referencing ASTM F1717) | "The modified Everest Spinal System constructs performed equally to or better than the predicates in... dynamic compression in accordance with ASTM F1717." |
Design & Materials | - Design features and sizing comparison to predicates | "The design features and sizing of the components were also compared and the Everest Spinal System was found to be substantially the same as these systems." |
Design & Materials | - Materials: Titanium Alloy and Chrome per ASTM and ISO standards | Confirmed to be manufactured from Titanium Alloy and Chrome per ASTM and ISO standards. |
Intended Use | - Adjunct to fusion, posterior stabilization in thoracic-lumbar spine for specific indications (trauma, stenosis, curvatures, tumor, pseudoarthrosis, failed fusion, severe spondylolisthesis L5-S1) | The device is intended for these uses, consistent with predicates. |
Summary of Device Evaluation and Study for Substantial Equivalence:
The study presented is not an AI/ML algorithm validation study, but rather a comparative engineering and design study to demonstrate substantial equivalence of a physical medical device.
-
Sample size used for the test set and the data provenance:
- This is not applicable in the context of an AI/ML study. For a physical device, "test set" refers to physical prototypes or components of the Everest Spinal System. The document doesn't specify the exact number of components tested but implicitly suggests sufficient samples were used to conduct the required ASTM F1717 mechanical tests.
- Data Provenance: The tests were conducted according to ASTM and ISO standards, implying a controlled laboratory environment. The "country of origin of the data" would be where these tests were performed, but this detail is not provided. It is a prospective generation of test data from manufactured components.
-
Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience):
- This is not applicable. The "ground truth" for a mechanical device is established by objective, verifiable physical measurements and engineering standards (ASTM F1717, ISO standards). There are no human "experts" establishing a subjective ground truth in this type of study.
-
Adjudication method (e.g. 2+1, 3+1, none) for the test set:
- Not applicable. Mechanical tests are typically evaluated against predefined quantitative limits set by standards like ASTM F1717, not through human adjudication.
-
If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- Not applicable. This is a physical device, and no human "readers" or AI assistance are involved in its performance evaluation.
-
If a standalone (i.e., algorithm only without human-in-the-loop performance) was done:
- Not applicable. This is a physical device, not an algorithm.
-
The type of ground truth used (expert consensus, pathology, outcomes data, etc):
- For this physical device, the "ground truth" is defined by established engineering performance standards (ASTM F1717) and material specifications (ASTM and ISO standards for Titanium Alloy and Chrome). The performance of the device is directly compared to these objective standards and to the performance of existing legally marketed predicate devices under the same test conditions.
-
The sample size for the training set:
- Not applicable. There is no AI/ML model being trained.
-
How the ground truth for the training set was established:
- Not applicable. No AI/ML model training occurred.
Conclusion for this Device:
The K2M Everest Spinal System demonstrated substantial equivalence by:
- Showing that its mechanical performance (static compression, static torsion, dynamic compression) was "equally to or better than" the predicate devices when tested according to ASTM F1717.
- Confirming its design features and sizing were "substantially the same" as predicate systems.
- Verifying its materials (Titanium Alloy and Chrome) met the relevant ASTM and ISO standards.
- Confirming its intended use aligns with the predicate devices.
This allows the FDA to conclude there are no significant differences that would adversely affect the product's use, thus granting 510(k) clearance based on substantial equivalence.
Ask a specific question about this device
Page 1 of 1