Search Filters

Search Results

Found 3 results

510(k) Data Aggregation

    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Hardware:
    The Materialise Shoulder Guide and Models are intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.

    The Materialise Shoulder Guide and Models are single use only.

    The Materialise Shoulder Guide and Models can be used in conjunction with the following total and reverse shoulder implants systems and their respective compatible components:

    Software:
    SurgiCase Shoulder Planner is intended to be used as a pre-surgical planner for simulation of surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components. SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate and edit pre-surgical plan data. The software leads to the generation of a surgery report along with a pre-surgical plan data file which can be used as input data to design the Materialise Shoulder Guide and Models.

    Device Description

    Materialise Shoulder System™ is a patient-specific medical device that is designed to be used to assist the surgeon in the placement of shoulder components during total anatomic and reverse shoulder replacement surgery. This can be done by generating a pre-surgical shoulder plan and, if requested by the surgeon, by manufacturing a patient-specific glenoid guide and models to transfer the glenoid plan to surgery. The device is a system composed of the following:

    • a software component, branded as SurgiCase Shoulder Planner. This software is a planning tool used . to generate a pre-surgical plan for a specific patient.
    • Materialise Shoulder Guide and Models, which are a patient-specific quide and models that are based ● on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patientspecific glenoid guide and models will be manufactured if the surgeon requests patient-specific guides to transfer the glenoid plan to surgery. The Materialise Shoulder Guide is designed and manufactured to fit the anatomy of a specific patient. A bone model of the scapula is delivered with the Materialise Shoulder Guide. A graft model can be delivered with the Materialise Shoulder Guide. The graft model visualizes the graft-space between implant and bone, based on the pre-operative planning of the surgeon. The graft model serves as a visual reference for the surgeon in the OR.
    AI/ML Overview

    The provided FDA 510(k) summary (K242813) for the Materialise Shoulder System™ describes a submission seeking substantial equivalence to a previously cleared device (K241143). This submission is primarily for adding compatibility with new implant components rather than introducing a completely new AI capability or significant software change that would necessitate extensive new performance data. Therefore, the document does not contain the detailed information typically found in a study proving a device meets acceptance criteria for an AI/ML product.

    Specifically, the document states:

    • "The non-clinical performance data has demonstrated that the subject software technological differences between the subject and predicate devices do not raise any different questions of safety and effectiveness." (Page 9)
    • "Software verification and validation were performed, and documentation was provided following the 'Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices.' This includes verification against defined requirements, and validation against user needs." (Page 10)
    • "Previous testing for biocompatibility, sterility, cleaning, debris, dimensional stability and packaging are applicable to the subject device. Testing verified that the accuracy and performance of the system is adequate to perform as intended. The stability of the device placement, surgical technique, intended use and functional elements of the subject device are the same as that of the predicate device of Materialise Shoulder System™ K241143 and previously cleared devices... therefore previous simulated surgeries using rapid prototyped bone models and previous cadaver testing on previously cleared devices K153602 and K131559 are considered applicable to the subject device." (Page 10)

    Given this, I cannot provide detailed answers to many of your questions as the submission relies on the substantial equivalence principle and prior testing rather than new, extensive performance studies for AI/ML.

    However, I can extract what is available:

    1. A table of acceptance criteria and the reported device performance

    The document does not provide a specific table of quantitative acceptance criteria and reported device performance for the current submission (K242813), as it relies on the previous clearance and the assessment that the changes (adding implant compatibility) do not raise new safety or effectiveness concerns.

    The general acceptance criterion mentioned is that the "accuracy and performance of the system is adequate to perform as intended." This was verified through previous testing, including "simulated surgeries using rapid prototyped bone models and previous cadaver testing."

    2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)

    The document mentions "previous simulated surgeries using rapid prototyped bone models and previous cadaver testing on previously cleared devices K153602 and K131559." It does not specify the sample size for these tests, nor the country of origin of the data or whether it was retrospective or prospective.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)

    This information is not provided in the document.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set

    This information is not provided in the document.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    No such MRMC study is mentioned. The device is a "pre-surgical planner" and "surgical instrument" designed to assist the surgeon, but the provided text does not detail comparative effectiveness studies of human readers (surgeons) with and without the AI (planning software) assistance.

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done

    The software (SurgiCase Shoulder Planner) generates a pre-surgical plan which the "qualified surgeon" can "visualize, measure, reconstruct, annotate, edit and approve" (Page 9). This indicates a human-in-the-loop process. Standalone performance of the algorithm without human interaction is not discussed as it's not the intended use.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)

    The document generally refers to "verification against defined requirements, and validation against user needs" and "accuracy and performance of the system is adequate to perform as intended" based on "simulated surgeries using rapid prototyped bone models and previous cadaver testing." This suggests a ground truth established through expert-defined surgical planning parameters and comparison to physical outcomes in the simulated/cadaveric environment, but specifics on how this ground truth was formalized (e.g., expert consensus on optimal planning, precise measurement validation) are not detailed.

    8. The sample size for the training set

    This device is a surgical planning tool and guides, not a deep learning AI model that requires a "training set" in the conventional sense for image classification or similar tasks. It is based on algorithms that process CT-imaging scans and anatomical landmarks to generate personalized plans and guides. Therefore, the concept of a "training set" for AI/ML is not applicable here in the way it would be for a pattern recognition AI. The software's robustness and accuracy are likely validated through extensive testing against various patient anatomies and surgical scenarios.

    9. How the ground truth for the training set was established

    As explained above, the concept of a training set as typically understood for AI/ML models is not directly applicable to this device based on the provided information.

    Ask a Question

    Ask a specific question about this device

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Hardware:
    The Materialise Shoulder Guide and Models are intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
    The Materialise Shoulder Guide and Models are single use only.
    The Materialise Shoulder Guide and Models can be used in conjunction with the following total and reverse shoulder implants systems and their respective compatible components:

    Software:
    SurgiCase Shoulder Planner is intended to be used as a pre-surgical planner for simulation of surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components. SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate and edit pre-surgical plan data. The software leads to the generation of a surgery report along with a pre-surgical plan data file which can be used as input data to design the Materialise Shoulder Guide and Models.

    Device Description

    Materialise Shoulder System™ is a patient-specific medical device that is designed to be used to assist the surgeon in the placement of shoulder components during total anatomic and reverse shoulder replacement surgery. This can be done by generating a pre-surgical shoulder plan and, if requested by the surgeon, by manufacturing a patient-specific glenoid guide and models to transfer the glenoid plan to surgery. The device is a system composed of the following:

    • a software component, branded as SurgiCase Shoulder Planner. This software is a planning tool used to generate a pre-surgical plan for a specific patient.
    • Materialise Shoulder Guide and Models, which are a patient-specific guide and models that are based on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patient-specific glenoid guide and models will be manufactured if the surgeon requests patient-specific guides to transfer the glenoid plan to surgery. The Materialise Shoulder Guide is designed and manufactured to fit the anatomy of a specific patient. A bone model of the scapula is delivered with the Materialise Shoulder Guide. A graft model can be delivered with the Materialise Shoulder Guide. The graft model visualizes the graft-space between implant and bone, based on the pre-operative planning of the surgeon. The graft model serves as a visual reference for the surgeon in the OR.
    AI/ML Overview

    The provided text describes a 510(k) submission for the Materialise Shoulder System™, Materialise Shoulder Guide and Models, and SurgiCase Shoulder Planner. It indicates that this is a special 510(k) submission, meaning it's for a modification to a previously cleared device. Therefore, much of the performance data refers back to the predicate device and prior clearances.

    Here's an analysis of the acceptance criteria and supporting study information based on the provided text:

    1. A table of acceptance criteria and the reported device performance

    The document does not explicitly state quantitative acceptance criteria or a direct table showing "acceptance criteria vs. reported device performance" for this specific 510(k) submission. Instead, for this special 510(k), the performance data mainly focuses on demonstrating that the changes (addition of new implant components to the software and hardware compatibility) do not raise new questions of safety and effectiveness compared to the predicate device.

    The "performance data (non-clinical)" section highlights that:

    • Hardware: Previous testing for biocompatibility, cleaning, debris, dimensional stability, and packaging is applicable. Accuracy and performance of the system were "adequate to perform as intended." Previous simulated surgeries and cadaver testing on earlier cleared devices are considered applicable.
    • Software: Software verification and validation were performed "against defined requirements" and "against user needs," following FDA guidance.

    Since this is a special 510(k) for an incremental change (adding compatibility with specific new implants), it's implied that the acceptance criteria are met if these additions do not negatively impact the established safety and effectiveness of the existing device, and the software development process meets regulatory standards.

    2. Sample sized used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)

    • Hardware (previous testing cited): The document mentions "previous simulated surgeries using rapid prototyped bone models" and "previous cadaver testing on previously cleared devices K153602 and K131559." It does not specify the sample size for these previous studies (e.g., number of bone models or cadavers) or their provenance (country of origin), nor does it state if they were retrospective or prospective.
    • Software (verification and validation): The document states "Software verification and validation were performed," but does not specify a separate "test set" in the context of clinical data or specific performance metrics with sample sizes for this particular submission. The V&V activities would involve testing against requirements and user needs, which could include various test cases and scenarios, but these are not quantified here as a "test set" size.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)

    This information is not provided in the document. The studies cited for hardware ("simulated surgeries" and "cadaver testing") and software ("verification and validation") do not detail the involvement of experts in establishing ground truth, their number, or specific qualifications. The software's function is to assist surgeons in planning, implying surgeon input in its use, but not explicitly in establishing a ground truth for a test set described in this submission.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set

    This information is not provided in the document.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    The document does not mention any MRMC comparative effectiveness studies. The device (SurgiCase Shoulder Planner software component and Materialise Shoulder Guide and Models hardware component) is designed to assist surgeons in planning and component positioning, but the provided text does not contain data on whether human readers/surgeons improve with or without this specific AI assistance or effect sizes.

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done

    The document states that the SurgiCase Shoulder Planner is "intended to be used as a pre-surgical planner for simulation of surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components." It also mentions, "SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate and edit pre-surgical plan data." This indicates that the software is a human-in-the-loop device, where the surgeon is actively involved in the planning process and responsible for approving the plan. Therefore, a standalone (algorithm only) performance assessment, without human input, is unlikely to be the primary method of evaluation described or required for this type of device. The document does not provide such standalone performance data.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)

    The document does not explicitly state the type of ground truth used for any specific test set related to this submission. For the hardware (guides and models), the "accuracy and performance" implies a comparison to a known standard or ideal, perhaps derived from anatomical models or surgical goals. For the software, "verification against defined requirements, and validation against user needs" suggests that the ground truth for V&V would be the successful adherence to these requirements and user expectations, which could involve internal expert review or adherence to pre-defined medical/engineering specifications. However, specific types of ground truth like pathology or long-term outcomes data are not mentioned.

    8. The sample size for the training set

    This information is not provided in the document. As the submission is for a special 510(k) updating compatibility, it's possible that the core algorithms were developed and trained previously, and details of their original training are not part of this specific submission. The focus here is on the impact of the changes to the device.

    9. How the ground truth for the training set was established

    This information is not provided in the document. Similar to the training set size, the specifics of how the ground truth was established for the original training of any underlying algorithms are not included in this special 510(k).

    Ask a Question

    Ask a specific question about this device

    K Number
    K230831
    Manufacturer
    Date Cleared
    2023-11-13

    (231 days)

    Product Code
    Regulation Number
    888.3670
    Why did this record match?
    Reference Devices :

    K212933, K182039, K092122, K113254

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    Anatomic Total Shoulder or Hemi-Shoulder
    The INHANCE SHOULDER SYSTEM with the humeral stemless anchor is intended for use in anatomic total shoulder replacement procedures to address the following:

    • Osteoarthritis
    • Post-traumatic arthrosis
    • Focal avascular necrosis of the humeral head
    • Previous surgeries of the shoulder that do not compromise the fixation

    The INHANCE SHOULDER SYSTEM with a humeral stem is intended for use in anatomic total or hemi-shoulder replacement procedures to address the following:

    • Non-inflammatory degenerative joint disease including osteoarthritis and avascular necrosis.
    • Rheumatoid arthritis.
    • Revision where other devices or treatments have failed.
    • Correction of functional deformity.
    • Fractures of the humeral head (with Short Humeral Stems).
    • Fractures of the humeral head and proximal humerus, where other methods of treatments are deemed inadequate (with Standard or Long Stems).
    • Difficult clinical management problems where other methods of treatment may not be inadequate.

    Reverse Total Shoulder
    The INHANCE SHOULDER SYSTEM Reverse Total Shoulder with a humeral stem is indicated for primary, fracture or revision total reverse shoulder replacement procedures the following. The system is indicated for use in patients whose shoulder joint has a gross rotator cuff deficiency. The patient must be anatomically and structurally suited to receive the implants and a functional deltoid muscle is necessary. The system is also indicated from an anatomic to reverse shoulder prosthesis without the removal of a well-fixed INHANCE humeral stem.

    • A severely painful, disabling, arthritic joint
    • Fractures of the humeral head (with Short Humeral Stems)
    • Fractures of the humeral head and proximal humerus (with Standard or Long Stems)
    • Revisions of previously failed shoulder joint replacements
    Device Description

    The INHANCE™ Convertible Glenoid system consists of a Baseplate with minor modifications compared to the previously cleared Baseplate in K212737 and a poly insert that locks atop the Baseplate to allow for an anatomic procedure. The Convertible Glenoid Insert implants are offered in four sizes: Small (24.0mm), Medium (26.5mm), Large (29.0mm), and X-Large (31.5mm). The Convertible Glenoid Insert implants consist of a Cross-linked, Vitamin E Ultra High Molecular Weight Polyethylene (Cross-linked, VE UHMWPE) articulation surface and an interrupted fixation ring along with a finned central fixation post to facilitate poly locking to the Convertible Glenoid Baseplate.

    The INHANCETM Convertible Glenoid Insert Implants have a lateral surface that is concave and designed to articulate with the Humeral Heads from the INHANCE Anatomic Stemmed and Stemless Shoulder Systems that are indicated for use in total shoulder arthroplasty.

    The INHANCE™ Convertible Glenoid Baseplates, previously cleared in K212737, were modified to provide for a means of mechanical fixation between the Convertible Glenoid Inserts and Baseplates.

    The INHANCE Convertible Glenoid implants are compatible with the implants and instruments previously cleared for use in the INHANCE Anatomic Shoulder System (K202716), the INHANCE Stemless Anatomic Shoulder System (K203108), and the INHANCE Reverse Shoulder System (K212737).

    AI/ML Overview

    This document describes the regulatory approval for the INHANCE™ Convertible Glenoid device. It is a medical device, specifically a component of a shoulder arthroplasty system. Therefore, the "acceptance criteria" and "device performance" refer to the successful completion of specific non-clinical (mechanical, material, and biocompatibility) tests according to established standards, rather than the performance of an AI algorithm based on clinical data.

    Here's a breakdown of the requested information based on the provided text:


    Acceptance Criteria and Device Performance

    1. Table of Acceptance Criteria and Reported Device Performance

    Test/Evaluation CategoryAcceptance Criteria (Implied by Standard)Reported Device Performance
    Range of Motion (RoM)Meet established specifications per ASTM F1378."The RoM targets were met."
    Biocompatibility AssessmentsFound to be biocompatible per ISO 10993-1 and FDA Guidance Document Use of International Standard ISO 10993-1."The devices were found to be biocompatible."
    Porous Structure CharacterizationIdentical to previously cleared porous structures (K202716 and K203108)."The porous structure used for the subject device is identical to the porous structure that was applied to the implants cleared under K202716 and K203108."
    Characterization of AO-HXLPEConforms to ASTM F2695, and identical in base resin, blending concentration of antioxidant, and crosslinking irradiation dose to VE UHMWPE material in K202716."The antioxidant highly crosslinked UHMWPE (AO-HXLPE) was fully characterized and conforms to ASTM F2695. The Vitamin E Ultra High Molecular Weight Polyethylene (Crosslinked, VE UHMWPE) material used for the INHANCE™ Convertible Glenoids is identical in base resin, blending concentration of antioxidant, and crosslinking irradiation dose to the VE UHMWPE material that was used on the devices cleared under K202716."
    Evaluation of Glenoid Wear RateDoes not represent a new worst-case for wear compared to predicate devices."An engineering justification demonstrated that the subject device does not represent a new worst-case for wear of the articulating surfaces when compared to the predicate devices."
    Dynamic Evaluation of Convertible Glenoid Loosening/DisassociationMeet acceptance criteria per ASTM F2028."The acceptance criteria were met."
    Static Evaluation of Anatomic Glenoid Locking Mechanism in ShearMeet acceptance criteria per ASTM F1829."The acceptance criteria were met."
    Glenoid Fatigue Resistance EvaluationMeet acceptance criteria for dissociation of VE XLPE Glenoid Inserts and Ti6Al4V Baseplate."The acceptance criteria were met."
    MRI CompatibilityQuantitative data obtained per ASTM F2052-15 (Force), ASTM F2213-17 (Torque), ASTM F2182-19e2 (Heating), ASTM F2119-07 (Image Quality) to inform labeling."Quantitative data was obtained to inform Magnetic Resonance Imaging (MRI) Conditional Labeling through the following evaluations: Force: Static Magnetic Field Induced Displacement Force per ASTM F2052-15; Torque: Static Magnetic Field Induced Torque per ASTM F2213-17; Heating: Radiofrequency field (RF) induced heating per ASTM F2182-19e2; Image Quality: Susceptibility induced image artifacts per ASTM F2119-07" (Implied acceptance by informing conditional labeling).
    Shelf-Life EvaluationEstablish a specified shelf life per ISO 11607-1 and ISO 11607-2."A five-year shelf life was established based on the resultant data."
    Sterilization ValidationAchieve a Sterility Assurance Level (SAL) of 10-6 using the VDmax method described in ISO 11137-1 and ISO 11137-2."Sterilization validation was completed using the VDmax method specified in ISO 11137-1 and ISO 11137-2. The Sterility Assurance Level (SAL) was found to be 10-9." (This exceeds the typical 10-6 requirement, indicating successful validation.)

    2. Sample Size Used for the Test Set and the Data Provenance

    This document describes the regulatory approval for a medical device (orthopedic implant), not an AI algorithm. Therefore, the concepts of "test set" and "data provenance" specifically for AI evaluation are not applicable in this context. The "test sets" here refer to the samples of the physical device or its materials subjected to various non-clinical (mechanical, material, biological) tests as outlined above. The provenance of these test articles would be the manufacturing process of the INHANCE™ Convertible Glenoid components.

    3. Number of Experts Used to Establish the Ground Truth for the Test Set and the Qualifications of Those Experts

    This information is not applicable. For physical medical devices, "ground truth" is established by adherence to recognized engineering standards (e.g., ASTM, ISO), which dictate testing methodologies and performance thresholds. These standards are developed and maintained by expert committees in relevant engineering and medical fields, but there isn't a "number of experts" establishing ground truth for a specific test set in the same way clinical data is evaluated for AI.

    4. Adjudication Method for the Test Set

    This information is not applicable. "Adjudication method" usually refers to resolving disagreements among human reviewers (e.g., radiologists) in AI or clinical studies. In the context of device testing, results are typically objective measurements against a standard, which are then analyzed and interpreted by qualified engineers/scientists.

    5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    This information is not applicable. An MRMC study is relevant to AI/diagnostic imaging devices. This document concerns the mechanical and material performance of an orthopedic implant.

    6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done

    This information is not applicable. This is not an AI algorithm.

    7. The Type of Ground Truth Used (expert consensus, pathology, outcomes data, etc.)

    For this medical device, the "ground truth" is based on:

    • Adherence to established international and national standards (e.g., ASTM F1378, ISO 10993-1, ASTM F2028, ASTM F1829, ASTM F2695, ISO 11607-1, ISO 11607-2, ISO 11137-1, ISO 11137-2).
    • Engineering justifications and characterizations demonstrating equivalence to predicate devices and acceptable performance (e.g., non-worst-case for wear, identical material properties).
    • Quantitative data derived from physical testing.

    8. The Sample Size for the Training Set

    This information is not applicable. There is no AI algorithm and thus no training set.

    9. How the Ground Truth for the Training Set Was Established

    This information is not applicable. There is no AI algorithm and thus no training set or ground truth for it.


    Summary of Device-Specific Information:

    The INHANCE™ Convertible Glenoid is a shoulder arthroplasty component. Its acceptance for market (substantial equivalence to predicate devices) was based on a comprehensive series of non-clinical tests and evaluations covering:

    • Range of Motion
    • Biocompatibility
    • Porous Structure Characterization
    • AO-HXLPE Material Characterization
    • Glenoid Wear Rate Evaluation
    • Dynamic Evaluation of Loosening/Disassociation
    • Static Evaluation of Locking Mechanism
    • Glenoid Fatigue Resistance
    • MRI Compatibility
    • Shelf-Life
    • Sterilization Validation

    All these tests met their respective acceptance criteria as defined by national and international standards (ASTM, ISO) and FDA guidance, ensuring the device's safety and effectiveness. Clinical testing was explicitly stated as "not necessary to demonstrate substantial equivalence."

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1