Search Results
Found 2 results
510(k) Data Aggregation
(165 days)
The Osteon Precision Milled Suprastructure is indicated for attachments in the treatment of partially or fully edentulous jaws for the purpose of restoring function. The Osteon Precision Milled Suprastructures are intended for attachment to a minimum of two (2) abutments.
The Osteon Milled Suprastructure is indicated for compatibility with the following abutment systems:
- · Astra Tech Implant System® Multi Base Abutment EV, 4.8mm, max 30°
- · BioHorizons Multi Unit Abutment, 4.8mm, max 30°
- · CONELOG® Implant System
- · Biomet 3 i Multi Unit Abutments, 4.8mm, max 30°
- · TSXTM Implants
- · Tapered Screw-Vent Implant
- · DESS Dental Multi Unit Abutments, 3.4-5.7 mm, 0°
- · 3i OSSEOTITE®
- · Astra Tech OsseoSpeed™
- · Neodent Grand Morse
- NobelReplace® Trilobe
- · NobelReplace® Conical
- · Nobel Brånemark System®
- · Straumann BLX Implants
- · DESS Dental Multi Unit Abutments. Angled. 3.4-6.5 mm, max 30°
- · NobelActive® NobelParallel Conical
- Straumann® Bone Level
- · Zimmer Screw Vent® and Tapered Screw-Vent®
- · Dentium SuperLine® Abutments, 4.5-5.5 mm, max30°
- · Genesis ACTIVE™ Multi-Unit Abutments, 4.8mm, max 30°
- · Implant Direct GPS® Angled Abutment, 5.0mm, max 30°
- KDG Abutments, 4.8mm, max 30°
- · Keystone Multi Unit Abutment, 4.8mm, 0°
- · Medentika Multi Unit Abutments, 4.8mm, max 30°
- · EV Series Dentsply® Implants Astratech Osseospeed®
- · F Series Nobel Biocare NobelActive® NobelReplace® Conical
- · H Series Biomet 3i Certain®
- L Series Straumann Bone Level
- · N Series Straumann Soft tissue Level
- · R Series Zimmer Dental Tapered Screwvent®
- Medentika Multi Unit Abutments, 4.8mm, 0°
- E Series Nobel Biocare Replace™ Select
- · I Series Biomet 3i Osseotite®
- K Series Nobel Biocare™ Branemark
- · S Series Astra Tech OsseoSpeedTM
- · T Series Dentsply Friadent® Frialit/Xive®
- · MegaGen Multi Unit Abutments, 4.8mm, max 30°
- · Xpeed® AnyRidge® Internal Implant System
- AnyOne® Internal Implant System
- AnyRidge® Octa 1 Implant System
- AnyOne® External Implant System
- AnyRidge® Octa 1 Implant System
- AnyOne® Internal Implant System
- Rescue Internal Implant System
- MIS Multi-unit Abutments, 4.8mm
- · C1 Conical Connection Implant System, max 30°
- · V3 Conical Connection Implant System, max 30°
- · Internal Hex Implant System, max 30°
- · Conical Connection, max 30°
- · Neodent GM Mini Conical Abutment, 4.8 mm, max 30°
- · Nobel Biocare™ Brånemark Multi Unit Abutment, 4.8 mm, max 17°
- · Nobel Biocare™ Multi Unit Abutment Plus, 4.8 mm, max 30°
- · Nobel Biocare™ Multi Unit Abutment, 4.8 mm, max 30°
- Nobel Biocare™ Multi Unit Abutments for Straumann and Astra Tech System, 4.8 mm, max 30°
- Nobel Biocare™ Multi Unit Abutments for Astra Tech, Camlog and Ankylos Implant Systems, 4.8 mm, max 30°
- · Nobel Biocare Xeal Abutments, 4.8 mm, max 30°
- · OSSTEM Multi Unit Abutment, 4.8mm, max 30°
- SS SA Fixture Implants
- SA Implant System
- · ET US SSS Prosthetic System
- · Paltop Multi Unit Abutment, 5.0 mm, max 17°
- · Southern Compact Conical Abutments, 4.8 mm
- MAX Implant System, 0°
- · Provata Implant System, max 30°
- · Deep Conical (DC) Implants, 0°
- · Piccolo Implants, 0°
- · External Hex Implants, max 30°
- Straumann® BLX Screw Retained Abutment, 4.6 mm, max 30°
- · Straumann® Screw Retained Abutment, 4.6 mm, max 30°
- · Zimmer Angled Tapered Abutments, 4.5 mm, max 30°
The Osteon Precision Milled Suprastructures (also referred to as superstructures) are metallic dental restorative devices that are intended to be attached by screw retention to dental implant abutments to aid in the treatment of partial and totally edentulous patients for the purpose of restoring chewing function. These suprastructures attach to dental implant abutments using the prosthetic screws from the original equipment manufacturers (OEM) and are used to support the final multi-unit restoration.
The Osteon Precision Milled Suprastructure is designed for an individual patient from scans of the patient's dental impression. The suprastructure is manufactured with the aid of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) technology. All CAD/CAM fabrication is performed by Osteon Medical.
Osteon Precision Milled Suprastructures facilitate the attachment of both removable and fixed dental prosthesis and hence are categorized as Type A and Type B.
- Type A: Intended to act as a supporting structure to facilitate the attachment of a removable dental prosthesis and include Primary Bar and Nexus Removable Bar.
- . Type B: Intended to act as a supporting structure to facilitate the attachment of a fixed dental prosthesis and include Melbourne Bar and Nexus Fixed Bar (including Nexus Hybrid, Nexus Bridge, Micro Nexus, and Nexus Wraparound).
The provided FDA 510(k) summary (K233083) describes the acceptance criteria and study for the Osteon Precision Milled Suprastructure.
1. Table of Acceptance Criteria and Reported Device Performance
This submission is a 510(k) for an expansion of an existing device (K221019) to add compatibility with new OEM abutment systems and introduce three new Type B Nexus Fixed Bars. The acceptance criteria are primarily based on demonstrating substantial equivalence to the predicate devices in terms of intended use, technological characteristics, and material composition.
The tables below synthesize the design specifications (acceptance criteria) and the device's performance (reported as meeting these specifications) by demonstrating substantial equivalence to predicate devices.
Table 1: Comparison of General Characteristics and Materials (summarized for clarity)
Characteristic | Acceptance Criteria (Predicate) | Reported Device Performance (Subject Device) |
---|---|---|
Intended Use | Dental implant abutment for restoring chewing function in partially or fully edentulous jaws, attached to a minimum of two abutments. Specific compatible OEM abutment systems listed. | Substantially Equivalent. The subject device shares the same intended use. The primary difference is an expanded list of compatible OEM abutment systems. |
Device Material | Titanium alloy Ti-6Al-4V (ASTM F136) | Meets/Substantially Equivalent. Manufactured from titanium alloy conforming to ASTM F136. |
Design/Technology | CAD/CAM milling from single milling blanks | Meets/Substantially Equivalent. CAD/CAM milling from single milling blanks. |
Design/Construction | Patient specific/machined | Meets/Substantially Equivalent. Patient specific/machined. |
Sterility | Supplied Nonsterile | Meets/Substantially Equivalent. Supplied Nonsterile (to be sterilized by end-user). |
Prescription/OTC | Prescription only | Meets/Substantially Equivalent. Prescription only. |
Recommended Cleaning & Maintenance | Proper oral hygiene | Meets/Substantially Equivalent. Proper oral hygiene. |
Table 2: Design Specifications (Acceptance Criteria vs. Reported Performance)
Design Parameters | Type A (Removable Prosthesis) Acceptance Criteria (Predicate) | Type B (Fixed Prosthesis) Acceptance Criteria (Predicate) | Type A (Removable Prosthesis) Reported Performance (Subject Device) | Type B (Fixed Prosthesis) Reported Performance (Subject Device) |
---|---|---|---|---|
Total Cylinders | 2-10 | 2-10 | 2-10 | 2-10 |
Suprastructure Span Between Cylinders (mm) | 1-30 mm | 1-30 mm | 1-30 mm | 1-30 mm |
Suprastructure Height (mm) | 3-12 mm | 3*-22 mm | 3-12 mm | 3*-22 mm |
Suprastructure Width (mm) | 3.4-12 mm | 3.4**-12 mm | 3.4-12 mm | 3.4**-12 mm |
Distal Cantilever Section (mm) | 0-15 mm | 0-15 mm | 0-15 mm | 0-15 mm |
Cylinder Height (mm) | 0-4.6 mm | 0-4.6 mm | 0-4.6 mm | 0-4.6 mm |
Cylinder Diameter (mm) | 4.5-8 mm | 4.5-8 mm | 4.5-8 mm | 4.5-8 mm |
*Note for Suprastructure Height: The Minimum Suprastructure Height for the Micro Nexus Bar (a new Type B bar in the subject device) is 2.5 mm, which is within the stated range of 3*-22 mm, where * indicates variability for this new bar.
**Note for Suprastructure Width: The Minimum Suprastructure Width for the Micro Nexus Bar (a new Type B bar in the subject device) is 2.5 mm, which is within the stated range of 3.4**-12 mm, where ** indicates variability for this new bar.
2. Sample size used for the test set and the data provenance
The submission is a 510(k) for an expansion of an existing device (K221019). The "study" proving the device meets acceptance criteria primarily relies on non-clinical data and demonstration of substantial equivalence to predicate devices.
- Test set/Sample size: The document does not describe a "test set" in the traditional sense of a clinical or imaging study with a defined sample size for statistical analysis. Instead, it relies on:
- Reverse engineering analysis of OEM abutments and OEM abutment screws: This was done to confirm compatibility. The sample size for this analysis is not explicitly stated but would involve the specific OEM abutments listed for compatibility with the subject device.
- Fatigue testing: The document states, "Fatigue testing was not performed since the Subject devices are abutment-borne and are not intended to compensate for angulation in excess of the maximum angulation of OEM angled abutments..." This indicates that engineering analysis and design specifications, rather than physical fatigue testing, were used to demonstrate performance in this regard.
- Data provenance: Not directly applicable as there isn't a "test set" from patients. The data relies on engineering analysis, existing predicate device data, and compliance with standards.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
Not applicable. This is not a study requiring expert readers to establish ground truth. Substantial equivalence claims are based on engineering, material, and design comparisons to legally marketed devices.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
Not applicable. There is no "test set" or diagnostic performance study that would require an adjudication method.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
Not applicable. This device is a physical dental suprastructure, not an AI-powered diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done
Not applicable. This device is a physical dental suprastructure, not an algorithm.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The "ground truth" equivalent for this submission is the established safety and effectiveness of the primary predicate device (K221019) and various reference devices, supported by:
- Compliance with recognized standards: Biocompatibility (ISO 10993-5, ISO 10993-12), sterilization validation (ANSI/AAMI/ISO 17665-1, ANSI/AAMI/ISO 17665-2, ANSI/AAMI/ISO 14937).
- Material specifications: Conformance to ASTM F136 for titanium alloy.
- Engineering analysis and design specifications: Comparison of design features to predicate devices and confirmation of compatibility through reverse engineering.
8. The sample size for the training set
Not applicable. This is not a machine learning or AI device that requires a training set.
9. How the ground truth for the training set was established
Not applicable. As above, there is no training set for this device.
Ask a specific question about this device
(89 days)
KDG Abutments are pre-manufactured prosthetic components for direct connection to endosseous dental implants and are intended for use as an aid in prosthetic rehabilitation.
The KDG-Osteon Precision Milled Suprastructure is indicated for attachment to KDG Abutments in the treatment of partially or fully edentulous jaws for the purpose of restoring chewing function. The KDG-Osteon Precision Milled Suprastructure is intended for attachment to a minimum of two (2) abutments.
Endosseous dental implants are surgically implanted into a patient's mouth to provide support for prosthetic devices, such as artificial teeth, in order to restore the patient's chewing function. Endosseous dental implant are secured to dental implants with a retaining screw to provide support for prosthetic devices, such as artificial teeth, in order to restore the patient's chewing function. Prosthetic devices used with the dental implant abutments in this submission may be screw-retained or cemented.
The purpose of this submission is the marketing clearance for KDG Abutments which comprises endosseous rootform dental abutments, abutment screws, and other associated components for single-unit, and overdenture restorations. The Subject device abutment components introduce 30° post correction angle multi-unit abutments compatible with the sponsor's previously cleared implants.
The Keystone family of abutments are compatible with the Keystone implants which have a hex-lobe internal connection. The Paltop family of abutments are compatible with the Paltop implants which have hex-wall internal connection.
The KDG-Osteon Precision Milled Suprastructure is an overdenture bar which is compatible with the Subject device abutments. The overdenture bar is dental restorative device that is intended for screw-retained attachment to dental abutments to aid in the treatment of partial and totally edentulous patients for the purpose of restoring their chewing function. The KDG-Osteon Precision Milled Suprastructure is fabricated by means of CAD/CAM technology and is used to facilitate the attachment of both fixed and removable prostheses.
The Osteon Precision Milled Suprastructure is designed for an individual patient from scans of the patient's impression. The suprastructure is manufactured in biocompatible Titanium alloy with the aid of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) technology. All CAD/CAM fabrication is performed by Osteon Medical, within our premises. The abutment-born Suprastructure is only indicated for straight placement and is not to exceed the maximum angulation of the connected multi-unit abutments.
KDG-Osteon Precision Milled Suprastructures facilitate the attachment of both removable and fixed dental prosthesis and hence categorized as type B.
The Subject device abutments, abutment screws, and bar suprastructure are fabricated from Ti-6Al-4V ELI titanium alloy (Grade 23) which conforms to ASTM F136, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401).
All Subject device components are one-time use device components are provided sterile and sterilized by gamma irradiation except for the Single-Unit and Multi-Unit copings, the KDG-Osteon Precision Milled Suprastructure and all replacement screws which are provided non-sterile. Devices provided as non-sterile are sterilized by steam.
The provided document is a 510(k) Premarket Notification from the FDA to Keystone Dental Inc. regarding their KDG Abutments. This document primarily focuses on establishing substantial equivalence to predicate devices based on indications for use and technological characteristics, supported by non-clinical performance data.
Crucially, this document does NOT contain information related to a study that proves the device meets specific acceptance criteria for AI/ML performance, nor does it describe a multi-reader multi-case (MRMC) comparative effectiveness study, standalone algorithm performance, or the establishment of ground truth for training or test sets in the context of an AI-powered device.
The acceptance criteria mentioned in the document refer to the performance of dental abutments in the context of mechanical testing (fatigue testing per ISO 14801:2016) and biocompatibility, not the performance of an AI/ML algorithm.
Therefore, I cannot provide the requested information for acceptance criteria and studies related to AI/ML performance based on the input text. The information in the document pertains to traditional medical device clearance.
Ask a specific question about this device
Page 1 of 1