(30 days)
Hardware:
The Materialise Shoulder Guide and Models are intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Shoulder Guide and Models are single use only.
The Materialise Shoulder Guide and Models can be used in conjunction with the following total and reverse shoulder implants systems and their respective compatible components:
- · DePuy Synthes'
- GLOBAL® APG+ Shoulder System (K052472)
- DELTA XTEND™ Reverse Shoulder System (K120174, K062250, K183077, K203694)
- GLOBAL® STEPTECH® APG Shoulder System (K092122)
- INHANCE™ Anatomic Shoulder System (K202716)1
- INHANCE™ Reverse Shoulder System (K212737)
- INHANCE™ Hybrid Anatomic Glenoid Implant (K212933)
- INHANCE™ Reverse Glenoid Peripheral Posts (K221467)
- INHANCE Convertible Glenoid (K230831)
- · Enovis'2 (DJO)
- Reverse® Shoulder Prosthesis (K051075, K111629, K092873)
- Turon® Shoulder System (K080402)
- AltiVate™ Anatomic Shoulder System (K162024)
- AltiVate™ Anatomic Augmented Glenoid (K213387, K222592)
- AltiVate™ Reverse Glenoid (K233481)
- · Smith+Nephew's3
- Titan™ Total Shoulder System (K100448, K112438, K142413, K152047)
- Titan™ Reverse Shoulder System (K130050, K161189, K173717, K181999)
- AETOS Total Shoulder System (K220847, K230572)
- AETOS Reverse Shoulder System (K220847, K230572)
- · Lima's
- SMR™ Shoulder System (K100858)
- SMR™ Reverse Shoulder System (K110598)
- SMR™ Modular Glenoid (K113254) (K143256)
- SMR™ 3-Pegs Glenoid (K130642)
- SMR™ TT Metal Back Glenoid (K133349)
- SMR TM 40mm Glenosphere (K142139)
- SMR™ TT Augmented 360 Baseplate (K220792)
- SMR™ TT Hybrid Glenoid (K220792)
- PRIMA TT Glenoid (K222427)
Software:
SurgiCase Shoulder Planner is intended to be used as a pre-surgical planner for simulation of surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components. SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate and edit pre-surgical plan data. The software leads to the generation of a surgery report along with a pre-surgical plan data file which can be used as input data to design the Materialise Shoulder Guide and Models.
Materialise Shoulder System™ is a patient-specific medical device that is designed to be used to assist the surgeon in the placement of shoulder components during total anatomic and reverse shoulder replacement surgery. This can be done by generating a pre-surgical shoulder plan and, if requested by the surgeon, by manufacturing a patient-specific glenoid guide and models to transfer the glenoid plan to surgery. The device is a system composed of the following:
- a software component, branded as SurgiCase Shoulder Planner. This software is a planning tool used . to generate a pre-surgical plan for a specific patient.
- Materialise Shoulder Guide and Models, which are a patient-specific quide and models that are based ● on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patientspecific glenoid guide and models will be manufactured if the surgeon requests patient-specific guides to transfer the glenoid plan to surgery. The Materialise Shoulder Guide is designed and manufactured to fit the anatomy of a specific patient. A bone model of the scapula is delivered with the Materialise Shoulder Guide. A graft model can be delivered with the Materialise Shoulder Guide. The graft model visualizes the graft-space between implant and bone, based on the pre-operative planning of the surgeon. The graft model serves as a visual reference for the surgeon in the OR.
The provided FDA 510(k) summary (K242813) for the Materialise Shoulder System™ describes a submission seeking substantial equivalence to a previously cleared device (K241143). This submission is primarily for adding compatibility with new implant components rather than introducing a completely new AI capability or significant software change that would necessitate extensive new performance data. Therefore, the document does not contain the detailed information typically found in a study proving a device meets acceptance criteria for an AI/ML product.
Specifically, the document states:
- "The non-clinical performance data has demonstrated that the subject software technological differences between the subject and predicate devices do not raise any different questions of safety and effectiveness." (Page 9)
- "Software verification and validation were performed, and documentation was provided following the 'Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices.' This includes verification against defined requirements, and validation against user needs." (Page 10)
- "Previous testing for biocompatibility, sterility, cleaning, debris, dimensional stability and packaging are applicable to the subject device. Testing verified that the accuracy and performance of the system is adequate to perform as intended. The stability of the device placement, surgical technique, intended use and functional elements of the subject device are the same as that of the predicate device of Materialise Shoulder System™ K241143 and previously cleared devices... therefore previous simulated surgeries using rapid prototyped bone models and previous cadaver testing on previously cleared devices K153602 and K131559 are considered applicable to the subject device." (Page 10)
Given this, I cannot provide detailed answers to many of your questions as the submission relies on the substantial equivalence principle and prior testing rather than new, extensive performance studies for AI/ML.
However, I can extract what is available:
1. A table of acceptance criteria and the reported device performance
The document does not provide a specific table of quantitative acceptance criteria and reported device performance for the current submission (K242813), as it relies on the previous clearance and the assessment that the changes (adding implant compatibility) do not raise new safety or effectiveness concerns.
The general acceptance criterion mentioned is that the "accuracy and performance of the system is adequate to perform as intended." This was verified through previous testing, including "simulated surgeries using rapid prototyped bone models and previous cadaver testing."
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
The document mentions "previous simulated surgeries using rapid prototyped bone models and previous cadaver testing on previously cleared devices K153602 and K131559." It does not specify the sample size for these tests, nor the country of origin of the data or whether it was retrospective or prospective.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not provided in the document.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not provided in the document.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
No such MRMC study is mentioned. The device is a "pre-surgical planner" and "surgical instrument" designed to assist the surgeon, but the provided text does not detail comparative effectiveness studies of human readers (surgeons) with and without the AI (planning software) assistance.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
The software (SurgiCase Shoulder Planner) generates a pre-surgical plan which the "qualified surgeon" can "visualize, measure, reconstruct, annotate, edit and approve" (Page 9). This indicates a human-in-the-loop process. Standalone performance of the algorithm without human interaction is not discussed as it's not the intended use.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)
The document generally refers to "verification against defined requirements, and validation against user needs" and "accuracy and performance of the system is adequate to perform as intended" based on "simulated surgeries using rapid prototyped bone models and previous cadaver testing." This suggests a ground truth established through expert-defined surgical planning parameters and comparison to physical outcomes in the simulated/cadaveric environment, but specifics on how this ground truth was formalized (e.g., expert consensus on optimal planning, precise measurement validation) are not detailed.
8. The sample size for the training set
This device is a surgical planning tool and guides, not a deep learning AI model that requires a "training set" in the conventional sense for image classification or similar tasks. It is based on algorithms that process CT-imaging scans and anatomical landmarks to generate personalized plans and guides. Therefore, the concept of a "training set" for AI/ML is not applicable here in the way it would be for a pattern recognition AI. The software's robustness and accuracy are likely validated through extensive testing against various patient anatomies and surgical scenarios.
9. How the ground truth for the training set was established
As explained above, the concept of a training set as typically understood for AI/ML models is not directly applicable to this device based on the provided information.
{0}------------------------------------------------
Image /page/0/Picture/0 description: The image shows the logo of the U.S. Food and Drug Administration (FDA). The logo consists of two parts: the Department of Health and Human Services logo on the left and the FDA logo on the right. The FDA logo features the letters "FDA" in a blue square, followed by the words "U.S. FOOD & DRUG ADMINISTRATION" in blue text.
October 18, 2024
Materialise N.V. Jenny Jones Global Quality Regulatory Manager Technologielaan 15 Leuven, 3001 Belgium
Re: K242813
Trade/Device Name: Materialise Shoulder System™, Materialise Shoulder Guide and Models, SurgiCase Shoulder Planner Regulation Number: 21 CFR 888.3660 Regulation Name: Shoulder joint metal/polymer semi-constrained cemented prosthesis Regulatory Class: Class II Product Code: QHE, KWS, PHX Dated: September 18, 2024 Received: September 18, 2024
Dear Jenny Jones:
We have reviewed your section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (the Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database available at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.
If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.
{1}------------------------------------------------
Additional information about changes that may require a new premarket notification are provided in the FDA guidance documents entitled "Deciding When to Submit a 510(k) for a Change to an Existing Device" (https://www.fda.gov/media/99812/download) and "Deciding When to Submit a 510(k) for a Software Change to an Existing Device" (https://www.fda.gov/media/99785/download).
Your device is also subject to, among other requirements, the Quality System (QS) regulation (21 CFR Part 820), which includes, but is not limited to, 21 CFR 820.30. Design controls; 21 CFR 820.90. Nonconforming product; and 21 CFR 820.100, Corrective and preventive action. Please note that regardless of whether a change requires premarket review, the QS regulation requires device manufacturers to review and approve changes to device design and production (21 CFR 820.30 and 21 CFR 820.70) and document changes and approvals in the device master record (21 CFR 820.181).
Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting of medical device-related adverse events) (21 CFR Part 803) for devices or postmarketing safety reporting (21 CFR Part 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reportingcombination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR Part 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR Parts 1000-1050.
All medical devices, including Class I and unclassified devices and combination product device constituent parts are required to be in compliance with the final Unique Device Identification System rule ("UDI Rule"). The UDI Rule requires, among other things, that a device bear a unique device identifier (UDI) on its label and package (21 CFR 801.20(a)) unless an exception or alternative applies (21 CFR 801.20(b)) and that the dates on the device label be formatted in accordance with 21 CFR 801.18. The UDI Rule (21 CFR 830.300(a) and 830.320(b)) also requires that certain information be submitted to the Global Unique Device Identification Database (GUDID) (21 CFR Part 830 Subpart E). For additional information on these requirements, please see the UDI System webpage at https://www.fda.gov/medical-device-advicecomprehensive-regulatory-assistance/unique-device-identification-system-udi-system.
Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-safety/medical-device-reportingmdr-how-report-medical-device-problems.
For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medicaldevices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-device-advice-comprehensive-regulatory
{2}------------------------------------------------
assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).
Sincerely,
Image /page/2/Figure/3 description: The image shows a digital signature. The signature is for "Farzana Sharmin -S". The date of the signature is 2024.10.18, and the time is 10:14:25 -04'00'.
Farzana Sharmin, PhD Assistant Director DHT6A: Division of Joint Arthroplasty Devices OHT6: Office of Orthopedic Devices Office of Product Evaluation and Quality Center for Devices and Radiological Health
Enclosure
{3}------------------------------------------------
Indications for Use
Submission Number (if known)
K242813
Device Name
Materialise Shoulder System™, Materialise Shoulder Guide and Models, SurgiCase Shoulder Planner
Indications for Use (Describe)
Hardware
The Materialise Shoulder Guide and Models are intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Shoulder Guide and Models are single use only.
The Materialise Shoulder Guide and Models can be used in conjunction with the following total and reverse shoulder implants systems and their respective compatible components:
- · DePuy Synthes'
- GLOBAL® APG+ Shoulder System (K052472)
- DELTA XTEND™ Reverse Shoulder System (K120174, K062250, K183077, K203694)
- GLOBAL® STEPTECH® APG Shoulder System (K092122)
- INHANCE™ Anatomic Shoulder System (K202716)1
- INHANCE™ Reverse Shoulder System (K212737)
- INHANCE™ Hybrid Anatomic Glenoid Implant (K212933)
- INHANCE™ Reverse Glenoid Peripheral Posts (K221467)
- INHANCE Convertible Glenoid (K230831)
- · Enovis'2 (DJO)
- Reverse® Shoulder Prosthesis (K051075, K111629, K092873)
- Turon® Shoulder System (K080402)
- AltiVate™ Anatomic Shoulder System (K162024)
- AltiVate™ Anatomic Augmented Glenoid (K213387, K222592)
- AltiVate™ Reverse Glenoid (K233481)
- · Smith+Nephew's3
- Titan™ Total Shoulder System (K100448, K112438, K142413, K152047)
- Titan™ Reverse Shoulder System (K130050, K161189, K173717, K181999)
- AETOS Total Shoulder System (K220847, K230572)
- AETOS Reverse Shoulder System (K220847, K230572)
- · Lima's
- SMR™ Shoulder System (K100858)
- SMR™ Reverse Shoulder System (K110598)
- SMR™ Modular Glenoid (K113254) (K143256)
- SMR™ 3-Pegs Glenoid (K130642)
- SMR™ TT Metal Back Glenoid (K133349)
- SMR TM 40mm Glenosphere (K142139)
- SMR™ TT Augmented 360 Baseplate (K220792)
- SMR™ TT Hybrid Glenoid (K220792)
- PRIMA TT Glenoid (K222427)
Software
SurgiCase Shoulder Planner is intended to be used as a pre-surgical planner for simulation of
{4}------------------------------------------------
surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components. SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate and edit pre-surgical plan data. The software leads to the generation of a surgery report along with a pre-surgical plan data file which can be used as input data to design the Materialise Shoulder Guide and Models.
1The implant system was originally cleared under K202716 as the Ignite Anatomic Shoulder System and was rebranded by DePuy Synthes as INHANCE™ Anatomic Shoulder System.
4DJO company name changed to Enovis. The shoulder products of Enovis were originally cleared under the company name of DJO (Encore Medical).
3 The Integra shoulder portfolio was acquired by Smith+Nephew in 2020. The shoulder products of the Titan ™ Shoulder System were transferred from Integra to Smith+Nephew.
Type of Use (Select one or both, as applicable)
Prescription Use (Part 21 CFR 801 Subpart D)
Over-The-Counter Use (21 CFR 801 Subpart C)
CONTINUE ON A SEPARATE PAGE IF NEEDED.
This section applies only to requirements of the Paperwork Reduction Act of 1995.
DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.
The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:
Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff(@fda.hhs.gov
"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."
{5}------------------------------------------------
510(k) Summary
The following section is included as required by the Safe Medical Devices Act (SMDA) of 1990 and 21CFR 807.92.18
| Company name | Materialise N.V. |
|---|---|
| Establishment registration number | 3003998208 |
| Street Address | Technologielaan 15 |
| City | Leuven |
| Postal code | 3001 |
| Country | Belgium |
| Phone number | +32 16 39 66 11 |
| Fax number | +32 16 39 66 06 |
| Primary contact person | Lisa Barbara Parolari |
| Contact title | Regulatory Affairs Specialist |
| Contact e-mail address | Regulatory.Affairs@materialise.be |
| Additional contact person | Jenny Jones |
| Contact title | Global Quality Regulatory Manager |
| Contact e-mail address | Jenny.Jones@materialise.com |
Submission date
The date of the Special 510(k) submission is September 18th, 2024.
Submission Information
| Trade Name | Materialise Shoulder System™Materialise Shoulder Guide and ModelsSurgiCase Shoulder Planner |
|---|---|
| Common Name | Patient specific instrumentation for shoulderarthroplasty + 3D planning software |
| Classification Name | Shoulder joint metal/polymer semi-constrainedcemented prosthesis |
| Primary product code | QHE (21 CFR 888.3660) |
| Additional product codes | KWS (21 CFR 888.3660)PHX (21 CFR 888.3660) |
Predicate Device
The predicate device to which substantial equivalence is claimed:
{6}------------------------------------------------
| Trade or proprietary or model name | Materialise Shoulder System™Materialise Shoulder Guide and ModelsSurgiCase Shoulder Planner |
|---|---|
| 510(k) number | K241143 |
| Decision date | May 22, 2024 |
| Classification product code | QHE (21 CFR 888.3660)KWS (21 CFR 888.3660)PHX (21 CFR 888.3660) |
| Manufacturer | Materialise N.V. |
Device Description
Materialise Shoulder System™ is a patient-specific medical device that is designed to be used to assist the surgeon in the placement of shoulder components during total anatomic and reverse shoulder replacement surgery. This can be done by generating a pre-surgical shoulder plan and, if requested by the surgeon, by manufacturing a patient-specific glenoid guide and models to transfer the glenoid plan to surgery. The device is a system composed of the following:
- a software component, branded as SurgiCase Shoulder Planner. This software is a planning tool used . to generate a pre-surgical plan for a specific patient.
- Materialise Shoulder Guide and Models, which are a patient-specific quide and models that are based ● on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patientspecific glenoid guide and models will be manufactured if the surgeon requests patient-specific guides to transfer the glenoid plan to surgery. The Materialise Shoulder Guide is designed and manufactured to fit the anatomy of a specific patient. A bone model of the scapula is delivered with the Materialise Shoulder Guide. A graft model can be delivered with the Materialise Shoulder Guide. The graft model visualizes the graft-space between implant and bone, based on the pre-operative planning of the surgeon. The graft model serves as a visual reference for the surgeon in the OR.
Indications for Use
Hardware
The Materialise Shoulder Guide and Models are intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Shoulder Guide and Models are single use only.
The Materialise Shoulder Guide and Models can be used in conjunction with the following total and reverse shoulder implants systems and their respective compatible components:
- . DePuy Synthes'
- GLOBAL® APG+ Shoulder System (K052472)
{7}------------------------------------------------
- DELTA XTEND™ Reverse Shoulder System (K120174, K062250, K183077, . K203694)
- GLOBAL® STEPTECH® APG Shoulder System (K092122) ●
- INHANCE™ Anatomic Shoulder System (K202716)1 ●
- INHANCE™ Reverse Shoulder System (K212737) ●
- INHANCE™ Hybrid Anatomic Glenoid Implant (K212933) ●
- INHANCE™ Reverse Glenoid Peripheral Posts (K221467)
- INHANCE Convertible Glenoid (K230831) .
- Enovis'2 (DJO) .
- Smith+Nephew's3 .
- Lima's
- SMR™ Shoulder System (K100858) .
- SMR™ Reverse Shoulder System (K110598) ●
- SMR™ Modular Glenoid (K113254) (K143256) .
- SMR™ 3-Pegs Glenoid (K130642) .
- SMR™ TT Metal Back Glenoid (K133349) ●
- SMR™ 40mm Glenosphere (K142139) .
- SMR™ TT Augmented 360 Baseplate (K220792)
- SMR™ TT Hybrid Glenoid (K220792) ●
- PRIMA TT Glenoid (K222427) ●
Software
SurgiCase Shoulder Planner is intended to be used as a pre-surgical planner for simulation of surgical interventions for shoulder orthopedic surgery. The software is used to assist in the positioning of shoulder components. SurgiCase Shoulder Planner allows the surgeon to visualize, measure, reconstruct, annotate Materialise N.V. Page 3
{8}------------------------------------------------
and edit pre-surgical plan data. The software leads to the generation of a surgery report along with a presurgical plan data file which can be used as input data to design the Materialise Shoulder Guide and Models.
1The implant system was originally cleared under K202716 as the Ignite Anatomic Shoulder System and was rebranded by DePuy Synthes as INHANCE™ Anatomic Shoulder System.
2DJO company name changed to Enovis. The shoulder products of Enovis were originally cleared under the company name of DJO (Encore Medical).
3 The Integra shoulder portfolio was acquired by Smith+Nephew in 2020. The shoulder products of the Titan™ Shoulder System were transferred from Integra to Smith+Nephew.
Functioning of the Device
The Materialise Shoulder System™ generates a pre-surgical plan based on medical imaging data using the SurgiCase Shoulder Planner. The SurgiCase Shoulder Planner allows a qualified surgeon to visualize, measure, reconstruct, annotate, edit and approve pre-surgical plan data, which leads to the generation of a case planning report. The SurgiCase Shoulder Planner allows for the creation of a qlenoid and/or humeral pre-operative plan. If requested by the surgeon, Materialise Shoulder Guide and Models are designed and manufactured based on the approved glenoid pre-surgical plan. Materialise Shoulder Guide are patient specific templates which transfer the pre-operatively determined pin positioning to the patient intraoperatively assisting the surgeon in positioning glenoid components used with total and reverse shoulder arthroplasty procedures. The Materialise Shoulder Guide and Models are available for glenoid components only.
Technological Characteristics
The Materialise Shoulder System™ has an equivalent intended use and the same fundamental scientific technology as the predicate device. The subject device's software is intended for positioning shoulder components, i.e. glenoid components and humeral components (same as the predicate device). The subject device's hardware is intended for positioning shoulder glenoid components only (same as the predicate device).
Software
The subject software device employs similar fundamental technologies as the predicate software device. Technological similarities include:
- Device functionality: The planning functionality, visualization options and planning features are ● the same for the glenoid planning of the subject device as for the predicate device.
- Software technology: The subject device has the same code base as the predicate device and uses the same methods for design and verification and validation as the predicate device.
Following technological differences exist between the subject device software and the predicate device software:
{9}------------------------------------------------
-
The main difference between the subject device and previously cleared predicate device K241143 is the addition of the following DePuy Synthes' and Enovis' components in the software component of the subject device for the surgeon to select during the planning stage:
DePuy Synthes: -
. INHANCE Convertible Glenoid (K230831)
Enovis: -
. AltiVate™ Anatomic Augmented Glenoid (Full Wedge) (K222592)
-
. AltiVate™ Reverse Glenoid (K233481)
The non-clinical performance data has demonstrated that the subject software technological differences between the subject and predicate devices do not raise any different questions of safety and effectiveness.
Hardware
The subject hardware device is substantially equivalent in intended use, design, functionality, operating principles, materials and performance characteristics compared with the predicate device.
The main difference between the subject device hardware and the predicate device is the extension of compatibility of the SurgiCase Shoulder Guides and Models with additional DePuy Synthes' and Enovis' implant components:
DePuy Synthes:
-
. INHANCE Convertible Glenoid (K230831)
Enovis: -
AltiVate™ Anatomic Augmented Glenoid (Full Wedge) (K222592)
-
. AltiVate™ Reverse Glenoid (K233481)
Performance Data (non-clinical)
Hardware:
Previous testing for biocompatibility, sterility, cleaning, debris, dimensional stability and packaging are applicable to the subject device. Testing verified that the accuracy and performance of the system is adequate to perform as intended. The stability of the device placement, surgical technique, intended use and functional elements of the subject device are the same as that of the predicate device of Materialise Shoulder System™ K241143 and previously cleared devices K233408, K231112, K230315, K220452, K212569, K193560, K172054, K172054, K170893, K153602 and K131559, and therefore previous simulated surgeries using rapid prototyped bone models and previous cadaver testing on previously cleared devices K153602 and K131559 are considered applicable to the subject device.
Software:
Software verification and validation were performed, and documentation was provided following the "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices." This includes verification against defined requirements, and validation against user needs. Materialise N.V. Page 5
{10}------------------------------------------------
Conclusion
The non-clinical performance testing indicates that the substantially equivalent to the predicate device.
§ 888.3660 Shoulder joint metal/polymer semi-constrained cemented prosthesis.
(a)
Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across-the-joint. This generic type of device includes prostheses that have a humeral resurfacing component made of alloys, such as cobalt-chromium-molybdenum, and a glenoid resurfacing component made of ultra-high molecular weight polyethylene, and is limited to those prostheses intended for use with bone cement (§ 888.3027).(b)
Classification. Class II. The special controls for this device are:(1) FDA's:
(i) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical Devices—Part I: Evaluation and Testing,’ ”
(ii) “510(k) Sterility Review Guidance of 2/12/90 (K90-1),”
(iii) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone Cement,”
(iv) “Guidance Document for the Preparation of Premarket Notification (510(k)) Application for Orthopedic Devices,” and
(v) “Guidance Document for Testing Non-articulating, ‘Mechanically Locked’ Modular Implant Components,”
(2) International Organization for Standardization's (ISO):
(i) ISO 5832-3:1996 “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-aluminum 4-vandium Alloy,”
(ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-chromium-molybdenum casting alloy,”
(iii) ISO 5832-12:1996 “Implants for Surgery—Metallic Materials—Part 12: Wrought Cobalt-chromium-molybdenum alloy,”
(iv) ISO 5833:1992 “Implants for Surgery—Acrylic Resin Cements,”
(v) ISO 5834-2:1998 “Implants for Surgery—Ultra-high Molecular Weight Polyethylene—Part 2: Moulded Forms,”
(vi) ISO 6018:1987 “Orthopaedic Implants—General Requirements for Marking, Packaging, and Labeling,” and
(vii) ISO 9001:1994 “Quality Systems—Model for Quality Assurance in Design/Development, Production, Installation, and Servicing,” and
(3) American Society for Testing and Materials':
(i) F 75-92 “Specification for Cast Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implant Material,”
(ii) F 648-98 “Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants,”
(iii) F 799-96 “Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Forgings for Surgical Implants,”
(iv) F 1044-95 “Test Method for Shear Testing of Porous Metal Coatings,”
(v) F 1108-97 “Specification for Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,”
(vi) F 1147-95 “Test Method for Tension Testing of Porous Metal,”
(vii) F 1378-97 “Standard Specification for Shoulder Prosthesis,” and
(viii) F 1537-94 “Specification for Wrought Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implants.”