K Number
K143683
Manufacturer
Date Cleared
2015-05-22

(149 days)

Product Code
Regulation Number
888.3070
Panel
OR
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The APEX-DL Spine System with APEX Spine System Components is intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudoarthrosis).

The APEX-DL Spine System with APEX Spine System Components is also indicated for pedicle screw fixation for the treatment of severe spondylolisthesis (Grades 3 and 4) of the L5-S1 vertebra in skeletally mature patients receiving fusion by autogenous bone graft, with the device fixed or attached to the lumbar and sacral spine (levels of pedicle screw fixation are L3 to S1), and for whom the device is intended to be removed after solid fusion is attained.

The APEX-DL Spine System with APEX Spine System Components is also a sacraliliac screw fixation system of the non-cervical spine indicated for degenerative disc disease (defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies), spondylolisthesis, trauma (fracture and/or dislocation), spinal stenosis, deformities (scoliosis, lordosis and/or kyphosis), tumor, and previous failed fusion (pseudo-arthrosis).

When used in a percutaneous posterior approach with AIM MIS instrumentation, the APEX-DL Spine System with APEX Spine System Components is intended for non-cervical pedicle fixation for the following indications: degenerative disc disease (defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies), spondylolisthesis, trauma (i.e., fracture or dislocation), spinal stenosis, curvatures (i.e., scoliosis, and/or lordosis), tumor, pseudoarthrosis, and failed previous fusion in skeletally mature patients . Levels of fixation are for the thoracic, lumbar and sacral spine.

When used for posterior non-cervical pediatic patients, the APEX-DL Spine System implants with APEX Spine System Components are indicated as an adjunct to treat adolescent idiopathic scoliosis. The APEX DL Spine System is intended to be used with autograft. Pediatric pedicle screw fixation is limited to a posterior approach.

Device Description

The APEX-DL Spine System includes Monoaxial, Uniplanar, and Polyaxial Double Lead Thread Screws in the cannulated and non-cannulated versions and in regular and reduction (extended tab) versions. APEX-DL Spine System is a low profile thoracolumbar implant for use with wide range of patient statures. The APEX-DL Spine System Polyaxial screws feature a friction head, which is designed to provide precise reduction mechanism as a result of easier rod capturing. The APEX-DL Spine System also includes Lordosed Percutaneous Rods. The APEX-DL Spine System is compatible with the APEX Spine System 5.5mm and 6.0mm rods, hooks, side-by-side connectors, iliac connectors, cross connectors, and washers.

AI/ML Overview

The APEX-DL Spine System is a spinal implant for immobilization and stabilization of spinal segments. The document indicates that no clinical studies were performed. The acceptance criteria and testing are based on non-clinical (mechanical) tests.

1. Table of Acceptance Criteria and Reported Device Performance

Test TypeAcceptance CriteriaReported Device Performance
ASTM F1717 (Vertebrectomy Model)
Static Compression BendingNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
Static TorsionNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
Dynamic Compression BendingNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
ASTM F1798 (Interconnection Mechanisms)
Static Axial Gripping CapacityNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
Axial Torque Gripping CapacityNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
Static Flexion-ExtensionNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"
Dynamic Flexion-ExtensionNot explicitly stated (comparison to predicates)Results were "equal or higher than the predicate systems"

Note: The acceptance criteria are implicitly defined as demonstrating mechanical properties that are "equal or higher" than the identified predicate devices, based on the testing standards.

2. Sample Size Used for the Test Set and Data Provenance

  • Sample Size: Not explicitly stated in the provided document. For each of the ASTM tests listed, a specific number of samples (implants/constructs) would have been used, but this detail is not provided.
  • Data Provenance: The data is from non-clinical (mechanical) testing conducted presumably by SpineCraft, LLC or a contracted testing facility. It is not patient or human data; therefore, country of origin or retrospective/prospective does not apply in the typical sense.

3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts

Not applicable. This is a non-clinical, mechanical testing study, not a study requiring expert clinical assessment or ground truth establishment in a medical imaging or diagnostic context. The "ground truth" here is the objective measurement of mechanical properties according to established ASTM standards.

4. Adjudication Method for the Test Set

Not applicable. This is a non-clinical, mechanical testing study. Adjudication methods like 2+1 or 3+1 are used for expert consensus in clinical or imaging studies.

5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done

No. An MRMC study is a clinical study involving multiple human readers interpreting medical cases. The provided document explicitly states, "No clinical studies were performed."

6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done

Not applicable. This device is a physical spinal implant, not an algorithm or AI system.

7. The Type of Ground Truth Used

The "ground truth" for this device's performance is based on objective mechanical measurements according to recognized industry standards (ASTM F1717 and ASTM F1798). The performance is then compared to "predicate systems" as a benchmark for substantial equivalence.

8. The Sample Size for the Training Set

Not applicable. This is a physical medical device undergoing mechanical testing, not a machine learning model that requires a training set.

9. How the Ground Truth for the Training Set Was Established

Not applicable. As described in point 8, there is no "training set" for this type of device evaluation.

§ 888.3070 Thoracolumbosacral pedicle screw system.

(a)
Identification. (1) Rigid pedicle screw systems are comprised of multiple components, made from a variety of materials that allow the surgeon to build an implant system to fit the patient's anatomical and physiological requirements. Such a spinal implant assembly consists of a combination of screws, longitudinal members (e.g., plates, rods including dual diameter rods, plate/rod combinations), transverse or cross connectors, and interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors).(2) Semi-rigid systems are defined as systems that contain one or more of the following features (including but not limited to): Non-uniform longitudinal elements, or features that allow more motion or flexibility compared to rigid systems.
(b)
Classification. (1) Class II (special controls), when intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudarthrosis). These pedicle screw spinal systems must comply with the following special controls:(i) Compliance with material standards;
(ii) Compliance with mechanical testing standards;
(iii) Compliance with biocompatibility standards; and
(iv) Labeling that contains these two statements in addition to other appropriate labeling information:
“Warning: The safety and effectiveness of pedicle screw spinal systems have been established only for spinal conditions with significant mechanical instability or deformity requiring fusion with instrumentation. These conditions are significant mechanical instability or deformity of the thoracic, lumbar, and sacral spine secondary to severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra, degenerative spondylolisthesis with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal tumor, and failed previous fusion (pseudarthrosis). The safety and effectiveness of these devices for any other conditions are unknown.”
“Precaution: The implantation of pedicle screw spinal systems should be performed only by experienced spinal surgeons with specific training in the use of this pedicle screw spinal system because this is a technically demanding procedure presenting a risk of serious injury to the patient.”
(2) Class II (special controls), when a rigid pedicle screw system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion in the treatment of degenerative disc disease and spondylolisthesis other than either severe spondylolisthesis (grades 3 and 4) at L5-S1 or degenerative spondylolisthesis with objective evidence of neurologic impairment. These pedicle screw systems must comply with the following special controls:
(i) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(ii) Non-clinical performance testing must demonstrate the mechanical function and durability of the implant.
(iii) Device components must be demonstrated to be biocompatible.
(iv) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(v) Labeling must include the following:
(A) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(B) Intended use and indications for use, including levels of fixation;
(C) Identification of magnetic resonance (MR) compatibility status;
(D) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user; and
(E) Detailed instructions of each surgical step, including device removal.
(3) Class II (special controls), when a semi-rigid system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion for any indication. In addition to complying with the special controls in paragraphs (b)(2)(i) through (v) of this section, these pedicle screw systems must comply with the following special controls:
(i) Demonstration that clinical performance characteristics of the device support the intended use of the product, including assessment of fusion compared to a clinically acceptable fusion rate.
(ii) Semi-rigid systems marketed prior to the effective date of this reclassification must submit an amendment to their previously cleared premarket notification (510(k)) demonstrating compliance with the special controls in paragraphs (b)(2)(i) through (v) and paragraph (b)(3)(i) of this section.