Search Filters

Search Results

Found 2 results

510(k) Data Aggregation

    K Number
    K172743
    Date Cleared
    2017-12-19

    (98 days)

    Product Code
    Regulation Number
    890.1375
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K120979

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Natus VikingQuest is intended for the acquisition, display, analysis, storage, reporting, and management of electrophysiological information from the human nervous and muscular systems including Nerve Conduction (NCS), Electromyography (EMG), Evoked Potentials (EP), Autonomic Responses and Intra-Operative Monitoring including Electroencephalography (EEG).

    Evoked Potential (EP) includes Visual Evoked Potentials (VEP), Auditory Evoked Potentials (AEP), Somatosensory Evoked Potentials (SEP) , Electroretinography (ERG), Electrooculography (EOG), P300, Motor Evoked Potentials (MEP) and Contingent Negative Variation (CNV). The Natus VikingQuest may be used to determine autonomic responses to physiologic stimuli by measuring the change in electrical resistance between two electrodes (Galvanic Skin Response and Sympathetic Skin Response). Autonomic testing also includes assessment of RR Interval variability. The VikingQuest is used to detect the physiologic function of the nervous system, for the location of neural structures during surgery, and to support the diagnosis of neuromuscular disease or condition.

    The listed modalities do include overlap in functionality. In general. Nerve Conduction Studies measure the electrical responses of the nerve; Electromyography measures the electrical activity of the muscle and Evoked Potentials measure electrical activity from the Central Nervous System.

    The Natus VikingQuest is intended to be used by a qualified healthcare provider.

    Device Description

    The Natus VikingQuest is designed for the acquisition, display, analysis, reporting, and management of electrophysiological information from the human nervous and muscular systems. The system is designed to perform nerve conduction studies (NCS), needle electromyography (EMG) testing, evoked potential (EP) testing, and intra-operative monitoring (IOM). VikingQuest provides a variety of tests spanning the various modalities. There are two configurations, portable and cart-based.

    AI/ML Overview

    The provided text describes the 510(k) premarket notification for the Natus VikingQuest, a diagnostic electromyograph. The information focuses on its substantial equivalence to predicate devices and adherence to various medical device standards. However, it does not contain specific details about acceptance criteria, reported device performance in terms of clinical accuracy or effectiveness, sample sizes for test sets, data provenance, ground truth establishment, or clinical study designs (like MRMC or standalone performance).

    The document primarily outlines the regulatory compliance, technological characteristics, and intended use of the device, rather than detailed clinical performance evaluations against specific acceptance criteria.

    Therefore, for aspects related to acceptance criteria and a study proving device performance, the information is largely absent in the provided text.

    Here's what can be extracted based on your request, highlighting the missing information:

    1. Table of Acceptance Criteria and Reported Device Performance:

    Feature/MetricAcceptance CriteriaReported Device Performance
    BiocompatibilityAccessories with patient contact materials must be made from medical grade biocompatible materials in accordance with ISO 10993-1: 2009.Appropriate component materials for accessories were previously verified to be biocompatible in accordance with ISO 10993-1: 2009.
    Software ComplianceSoftware designed and developed according to a robust software development process, verified and validated consistent with FDA guidance documents and standards (e.g., "The content of premarket submissions for software contained in medical devices," "Off-the-shelf software use in medical devices," "General principles of software validation," "Content of premarket submissions for management of cybersecurity in medical devices," IEC 62304: 2006+A1:2015).Results indicate that the Natus VikingQuest software complies with its predetermined specifications, applicable guidance documents, and applicable standards.
    Electrical SafetyCompliance with AAMI/ANSI ES60601-1: 2005/(R)2012, A1: 2012.Results indicate that the Natus VikingQuest complies with the applicable standards.
    Electromagnetic CompatibilityCompliance with IEC 60601-1-2: 2014.Results indicate that the Natus VikingQuest complies with the applicable standards.
    Usability & Safety of EMG/Evoked Response EquipmentCompliance with IEC 60601-1-6: 2013, IEC 60601-2-40: 2016, and IEC 62366-1: 2015.Results indicate that the Natus VikingQuest complies with its predetermined specifications and the applicable standards.
    Clinical Performance (Accuracy/Effectiveness for diagnosis/monitoring)Not specified in the provided text.Not specified in the provided text. The document states "Verification and validation activities were conducted to establish the performance and safety characteristics of the device modifications... The results... demonstrate that the Natus VikingQuest is as safe, as effective, and performs as well as or better than the predicate devices." This is a general statement of equivalence, not a detailed performance report.

    2. Sample size used for the test set and the data provenance:

    • Sample Size (Test Set): Not specified in the provided text.
    • Data Provenance: Not specified. The document describes engineering and regulatory compliance testing rather than clinical study data.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

    • Not applicable as no clinical test set or ground truth establishment by experts for performance against a diagnosis is described. The "ground truth" mentioned pertains to compliance with engineering and safety standards.

    4. Adjudication method for the test set:

    • Not applicable as no human adjudication of clinical results is described.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

    • No mention of an MRMC study or AI assistance. The Natus VikingQuest is a diagnostic electromyograph for acquiring, displaying, analyzing, and reporting electrophysiological information, not an AI-driven interpretation system.

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

    • The document describes a medical device (electromyograph) for use by a qualified healthcare provider. It does not describe a standalone algorithm or AI performance. The performance verified is for the entire device as a system.

    7. The type of ground truth used:

    • For the regulatory and engineering tests (biocompatibility, software, electrical safety, EMC, usability), the "ground truth" is compliance with established international standards (ISO, IEC, AAMI/ANSI) and FDA guidance documents. There is no mention of pathology, expert consensus on clinical findings, or outcomes data in the context of the device's diagnostic accuracy proving.

    8. The sample size for the training set:

    • Not applicable. The document describes a medical device, not an AI/machine learning algorithm with distinct training and test sets in the typical sense. Software development was "rigorously verified and validated consistent with FDA guidance documents and standards," implying traditional software testing, not machine learning model training.

    9. How the ground truth for the training set was established:

    • Not applicable, for the same reasons as point 8.
    Ask a Question

    Ask a specific question about this device

    K Number
    K162199
    Date Cleared
    2017-03-02

    (209 days)

    Product Code
    Regulation Number
    882.1870
    Why did this record match?
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Cascade IOMAX™ Intraoperative Monitor with Surgical Studio software (IOMAX) is an electroneurodiagnostic device that acquires, displays and stores physiologic data from peripheral sensory and motor nerves, muscles and the central nervous system, generated either spontaneously or elicited stimuli. The acquired data are necessary to perform somatosensory. auditory and visual evoked potentials (EPs), electroencephalography (EEG), electromyography (EMG), transcranial motor evoked potentials (TcMEPs), direct cortical stimulation, nerve conduction studies and Train of Four (TOF) analysis. SpO2 measures and displays oxygen saturation and heart rate information. The system also delivers direct nerve stimulation required for specific surgical procedures.

    Evoked Potentials (EPs): IOMAX provides electrical, auditory or visual stimulation and measures, and stores the electrical activity of the nervous system in response to the stimulation.

    EEG: IOMAX measures, displays, records, and stores electrical activity of the brain from two or more electrodes on the head.

    Free Run EMG: IOMAX acquires, displays, records, and stores spontaneous EMG activity of motor nerves by continually displaying a live stream of mechanically induced myotome contractions.

    TcMEP: IOMAX delivers transcranial stimulation via dedicated outputs for intraoperative assessment. Cortical Stimulation: IOMAX delivers Low Current Stimulation (LCS) during surgical procedures to map various areas of the cortex.

    Triggered EMG (TEMG): IOMAX electrically stimulates the motor nerves, and displays, records, and stores the resulting compound muscle action potentials in the innervated muscle.

    Nerve Conduction Study (NCS): IOMAX measures, displays, records, and stores sensory and motor nerve conduction time (latency) by applying a stimulus to peripheral nerves, the spinal cord, and the central nervous system.

    Train of Four (TOF) or Twitch Test: IOMAX delivers a train of four pulses and measures, and stores the compound muscle action potential amplitude fade for analysis.

    SpO2: IOMAX measures and displays oxygen saturation and heart rate information. Remote Reader: IOMAX provides passive, real time remote review of intraoperative monitoring for a physician outside of the operating room.

    IOMAX is used by or under the direction of a licensed physician, surgeon, or neurologist in a professional healthcare facility environment for pre-operative, intraoperative and post-operative testing.

    Device Description

    The IOMAX is a multimodality intraoperative neuromonitoring (IONM) system. It consists of Cadwell custom hardware, a standard laptop or desktop personal computer (PC) running a standard off-the-shelf (OTS) operating system (OS), and Cadwell custom software.

    The modalities recorded, measured and displayed by the IOMAX are:

    • . Evoked potential (EP) in the form of:
      • Brainstem auditory (BAEP): O
      • Visual (VEP); and O
      • Somatosensory (SSEP). O
    • Transcranial electrical motor evoked potential (TcMEP).
    • Electromyography (EMG). ●
    • Triggered EMG.
    • Electroencephalogram (EEG). ●
    • Nerve conduction studies.
    • Train of four (TOF). ●
    • SpO2 and heart rate values. ●
    • Threshold mode. ●
    • Cortical stimulation.
    AI/ML Overview

    Here's an analysis of the provided text regarding the acceptance criteria and supporting studies for the Cadwell IOMAX Intraoperative Monitor:

    Acceptance Criteria and Reported Device Performance

    The provided document describes the Cadwell IOMAX Intraoperative Monitor, an electroneurodiagnostic device. The acceptance criteria are broadly focused on the device's technical performance, safety, and compliance with various medical device standards. The document does not present specific quantitative acceptance criteria or reported performance values in a distinct table format. Instead, it states that "Test results indicate that the IOMAX complies with its predetermined specifications and the applicable standards." and "Clinical results indicate that the IOMAX complies with the applicable requirements of the standard."

    However, we can infer the categories of acceptance criteria based on the performance testing summary. The reported device performance is generally a statement of compliance.

    Acceptance Criteria CategoryReported Device Performance
    BiocompatibilityAccessories (SpO2 sensor) verified to be biocompatible in accordance with ISO 10993-1:2009. The core IOMAX device has no patient contact materials.
    SoftwareSoftware designed and developed according to a robust software development process, rigorously verified and validated. Complies with predetermined specifications and applicable FDA guidance documents and IEC 62304:2006.
    Electrical SafetyComplies with ANSI/AAMI ES60601-1:2005 and IEC 60529:1989 (and amendments/corrigenda).
    Electromagnetic CompatibilityComplies with IEC 60601-1-2:2014.
    Performance Testing – BenchComplies with internal requirements and standards including IEC 60068-2-27, IEC 60068-2-64, IEC 60601-2-26, IEC 60601-2-40, IEC 60601-1-6, IEC 62366, and ISO 80601-2-61.
    Performance Testing – ClinicalComplies with the applicable requirements of ISO 80601-2-61:2011 for pulse oximeter equipment.

    Study Details:

    The provided document summarizes various tests rather than detailing a single "study" as one might expect for a clinical trial. However, it does outline the testing performed to demonstrate compliance.

    1. Sample size used for the test set and the data provenance:

      • Biocompatibility: Not explicitly stated as a "sample size" for a test set in the clinical sense. The verification was on "component materials" of accessories. Data provenance is implied to be laboratory testing of materials.
      • Software, Electrical Safety, EMC, Bench Performance: Not applicable in terms of patient sample size. These involve engineering and laboratory testing of the device itself.
      • Clinical Performance (SpO2): The document states "Clinical results indicate that the IOMAX complies with the applicable requirements of the standard [ISO 80601-2-61:2011, Medical electrical equipment – Part 2-61: Particular requirements for basic safety and essential performance of pulse oximeter equipment]". This standard defines requirements for pulse oximeters, which would necessitate testing on human subjects. However, the specific sample size for this clinical testing is not provided in the given text. The data provenance is clinical testing against a standard. The country of origin is not specified.
    2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

      • This information is not provided in the document. The testing described is primarily technical compliance with standards, and clinical performance for SpO2 which refers to a standard directly. There is no mention of independent expert review or ground truth establishment in the traditional sense for diagnostic accuracy.
    3. Adjudication method (e.g. 2+1, 3+1, none) for the test set:

      • This information is not provided and is unlikely to be applicable for the types of compliance testing described here. Adjudication methods are typically used for medical image interpretation or diagnostic accuracy studies involving human readers.
    4. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

      • No MRMC comparative effectiveness study was done or mentioned. This device is an intraoperative monitor and stimulator; it is not an AI-powered diagnostic imaging tool that would typically involve human readers interpreting cases with or without AI assistance. Therefore, no effect size of human improvement with AI assistance is applicable or provided.
    5. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

      • The IOMAX is an electroneurodiagnostic device that acquires and displays physiological data. Its "performance" is based on the accuracy and reliability of its measurements and stimulation. The testing described (electrical safety, EMC, bench, and clinical for SpO2) assesses the device's inherent function, which is essentially "standalone performance" in the sense that the device directly performs the measurement or stimulation. It doesn't involve an "algorithm" in the AI sense, but rather the hardware and software's ability to accurately capture and present physiological signals or deliver specific stimuli.
      • The clinical performance for SpO2 (compliance to ISO 80601-2-61) is a test of the device's standalone accuracy in measuring oxygen saturation and heart rate.
    6. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):

      • For the technical compliance tests (biocompatibility, software, electrical safety, EMC, bench performance), the "ground truth" is defined by the requirements of the specified industry standards (e.g., ISO 10993-1, ANSI/AAMI ES60601-1, IEC 60601-1-2, IEC 60068, IEC 60601-2-26, IEC 60601-2-40, IEC 60601-1-6, IEC 62366). The device's output is compared against the expected performance defined by these standards.
      • For the clinical performance testing for SpO2, the ground truth would be established by a reference method or device as required by ISO 80601-2-61, which typically involves comparing the pulse oximeter's readings against arterial blood gas analysis results.
    7. The sample size for the training set:

      • This information is not applicable as the device is not described as an AI/machine learning device that requires a training set in the conventional sense. The "training set" for software development would be the requirements and specifications used during its creation, rather than a dataset for statistical model training.
    8. How the ground truth for the training set was established:

      • As the concept of a "training set" for an AI model is not applicable here, the establishment of ground truth for such a set is also not applicable. The software's "ground truth" during development would be its specified functional requirements.
    Ask a Question

    Ask a specific question about this device

    Page 1 of 1