Search Results
Found 2 results
510(k) Data Aggregation
(56 days)
Triathlon® Hinge Knee System is intended to be implanted with bone cement for the following condition(s):
- There is destruction of the joint surfaces, with or without significant bone deformity.
- The cruciate and/or collateral ligaments do not stabilize the knee joint.
- The ligaments are inadequate and/or the musculature is weak. And/or
- Revision is required of a failed prosthesis where there has been gross instability, with or without bone loss or inadequate soft tissue.
When used with MRH femur and/or MRH tibial baseplate replacement indicated in revision of an existing prosthesis:
- Revision is required of a failed prosthesis where there has been gross instability, with or without bone loss or inadequate soft tissue.
When used with compatible GMRS components:
- Where segmental resection and/or replacement of femur and/or proximal tibia is required
The subject THK components are a line extension of the previously cleared Triathlon® Hinge Knee System (K223528, K230416). The THK System (K223528, K230416) is a tricompartmental knee system consisting of a stemmed femoral component and a stemmed tibial bearing component connected by a set of previously cleared MRH or THK Bushings and an MRH or THK Axle (K994207, K002552, K223528, K230416). A bumper locks this assembly. This assembly provides motion through the MRH or THK Axle/Bushings combination in the flexion/extension plane. The articulation between the bearing surfaces on the underside of a tibial bearing component and a tibial insert provides motion in the rotating plane. A hinge tibial insert is assembled to a Triathlon® Hinge Revision Tibial Baseplate that incorporates a longitudinal bore to accept a previously cleared MRH Tibial Sleeve (K994207, K002552) or Triathlon Tibial Sleeve (K223528, K230416). Optional distal femoral and tibial augments are available to fill bone defects.
The subject Triathlon® Hinge Small Proximal Tibial Bearing Component and Triathlon® End Cap are sterile, single use devices intended for cemented use only and are being added to the previously cleared THK system (K223528, K230416) as an extension. They can be used with previously cleared MRH Knee components (K994207, K002552), GMRS (K023087, K222056), and Triathlon® Knee System components (K172634, K172326, K190991, K143393, K141056, K132624, K070095, K061521, K053514, K052917, K051948, K051146, K040267).
This FDA 510(k) clearance letter is for a mechanical medical device (a knee implant system), not an AI/software as a medical device. Therefore, the request for "acceptance criteria and the study that proves the device meets the acceptance criteria" using metrics relevant to AI/software (like sensitivity, specificity, MRMC studies, ground truth for training/test sets, etc.) is not applicable here.
The document provided details about the substantial equivalence of the "Triathlon® Hinge Knee System" to previously cleared predicate devices. The "study" proving the device meets acceptance criteria for a mechanical implant typically involves non-clinical (benchtop) testing and engineering analyses to demonstrate performance, material compatibility, and safety, rather than clinical trials or AI performance evaluations with ground truth.
Here's how the provided information relates to the typical evaluation of such a device, addressing the closest analogues to your requested points:
Acceptance Criteria and Device Performance for a Mechanical Implant:
For mechanical implants like the Triathlon® Hinge Knee System, "acceptance criteria" are generally tied to the successful completion of various non-clinical (benchtop) tests and analyses. These tests simulate the physical stresses and conditions the implant will experience in the human body. The "study" proving the device meets these criteria is the execution and successful outcome of these non-clinical tests.
No direct table of "acceptance criteria" vs. "reported device performance" in the AI sense is provided in this 510(k) summary. Instead, the summary lists the types of non-clinical tests performed to demonstrate performance and substantial equivalence to predicate devices. The implied acceptance is that the device passed these tests, meaning its performance in these simulated scenarios was deemed acceptable and comparable to existing, legally marketed devices.
Table of Non-Clinical Tests (Analogous to Performance Metrics):
Acceptance Criteria (Test Type) | Reported Device Performance (Implied "Pass") | Notes |
---|---|---|
Triathlon Hinge Bearing Component Varus/Valgus Fatigue | Met performance standards | Tests the component's ability to withstand repeated bending stresses in side-to-side directions, simulating loading during gait. |
Triathlon Hinge Bearing Component Chair Rise Testing | Met performance standards | Simulates stresses experienced during a common activity (standing up from a chair). |
Triathlon Hinge Full Construct Fatigue | Met performance standards | Evaluates the fatigue life of the entire assembled knee system under cyclic loading. |
Wear Test Rationale for New Constructs | Acceptable wear characteristics demonstrated | Rationale provided to show that wear performance is acceptable, likely through comparison to predicate devices or established standards. Direct wear testing is implied by "wear test rationale". |
Analysis of Contact Area/Contact Stress & Constraint Analysis | Acceptable contact mechanics & constraint | Computer modeling and/or benchtop tests to evaluate how the components interact under load, ensuring appropriate stress distribution and constrained movement. |
Range of Motion and Rotational Freedom Analysis (ASTM F1223-20) | Met specified ranges and freedoms | Tested for flexion/extension, internal/external rotation, varus/valgus, and translation (medial/lateral, proximal/distal, anterior/posterior) to ensure physiological movement. |
Total Femur Construct Compatibility & Triathlon Hinge Bushing/Axle Compatibility | Compatible with legacy components | Ensured new components integrate properly with existing cleared femoral and tibial components. |
Triathlon Revision Baseplate-End Cap Locking Strength Analysis | Adequate locking strength | Evaluated the mechanical strength of the connection points. |
Triathlon End Cap Tightening Analysis | Optimal tightening confirmed | Ensured secure fixation of the end cap. |
Triathlon End Cap Load Carrying Capacity Rationale | Acceptable load capacity | Analysis provided to demonstrate the end cap can withstand expected loads. |
Triathlon End Cap Stability Analysis | Stable under normal use | Evaluated the end cap's ability to remain in place and function without loosening. |
MRI Testing (Safety for imaging) - Displacement, Torque, Artifacts, RF Heating | All MRI safety criteria met | Performed to confirm the device is safe for patients undergoing MRI procedures (e.g., no excessive magnetic pull, acceptable image distortion, no dangerous heating). Standards: ASTM F2052-15, ASTM F2213-17, ASTM F2119-07 (reapproved 2013), ASTM F2182-191ae. |
Biocompatibility (ISO 10993-1:2020) | Biocompatible with human tissue | Testing to ensure the materials used in the implant do not cause adverse biological reactions in the body. |
Shelf-life Validation (ISO 11607-1:2019, ISO 11607-2:2019, ASTM F1980-21) | Validated shelf-life | Ensures the sterility and integrity of the packaging system and the device itself are maintained over the specified shelf-life. Methods: ASTM F1886/F1886M-16, ASTM F88/88M-21, ASTM F2096-11(2019). |
Bacterial Endotoxin Testing (ANSI/AAMI ST72:2019) | Endotoxin limit |
Ask a specific question about this device
(90 days)
The MAKO Surgical Corp. Patellofemoral Knee Implant System II is intended to be used in cemented patello-femoral arthroplasty in patients with degenerative arthritis in the distal femur and patella, patients with a history of patellar dislocation or patella fracture, or patients with failed previous surgery (arthroscopy, tibial tubercle elevation, lateral release) where pain, deformity or dysfunction persists. These components are single use only and are intended for implantation with bone cement.
This device consists of a CoCrMo patellofemoral component and an ultra-high molecular weight polyethylene patella components are intended for cemented, one-time use only. The anterior surface of the patellofemoral component is polished and features a trochlear groove. The posterior surface of the patellofemoral and patella component employ features such as cement pockets and pegs for enhanced stability of the prosthesis when cemented onto the femur and patella, respectively.
The provided text describes the MAKO Surgical Corp. Patellofemoral Knee Implant System II and its regulatory clearance, but it does not contain information about acceptance criteria, device performance metrics, or study details (like sample size, ground truth establishment, expert qualifications, or comparative effectiveness studies).
Therefore, I cannot fulfill your request for a table of acceptance criteria and reported device performance, nor can I provide information about the study design elements you requested, as this information is not present in the provided document.
This document is a 510(k) summary and FDA clearance letter, which focuses on demonstrating substantial equivalence to previously marketed devices rather than presenting detailed clinical study results or performance metrics against specific acceptance criteria for a new AI/software-based medical device.
Ask a specific question about this device
Page 1 of 1