(58 days)
This Rotating Hinge Knee System is intended to be implanted with bone cement for the following condition(s):
- · There is destruction of the joint surfaces, with or without significant bone deformity.
- · The cruciate and/or collateral ligaments do not stabilize the knee joint.
- · The ligaments are inadequate and/or the musculature is weak. And/or
- · Revision is required of a failed prosthesis where there has been gross instability, with or without bone loss or madequate soft tissue.
- · And/or where segmental resection and replacement of the distal femur is required.
The subject THK System is a line extension to the existing Triathlon® Knee System and will be a modified version of the predicate Modular Rotating Hinge (MRH) Knee System and Triathlon® Total Knee System. The THK System is a tricompartmental knee system consisting of a new hinge femoral component and a new tibial bearing component connected by a set of previously cleared MRH bushings and an MRH axle (K994207, K002552). A new bumper locks this assembly. This assembly provides motion through the MRH axle/bushings combination in the flexion/extension plane. The articulation between the bearing surfaces on the underside of the new tibial bearing component and a new hinge tibial insert provides motion in the rotating plane. The hinge tibial insert is assembled to a new revision tibial baseplate which incorporates a longitudinal bore to accept a new tibial sleeve or previously cleared MRH tibial sleeve (K994207, K002552). Optional new distal femoral and tibial augments are available to fill bone defects.
The THK System is designed to provide varus/valgus stability throughout the range of motion, internal/external rotation about the tibial axis, constraint by the bearing surface radius on the tibial bearing component, and an extensive range of size, modularity, and resection options. The subject THK System consists of:
- Hinge Femoral Components in six sizes and in left and right configurations o
- Revision Tibial Baseplates in seven sizes O
- Hinge Inserts in seven sizes and five thicknesses each hinge insert is packaged with a O standard sleeve subcomponent
- Tibial Bearing Components in three sizes O
- Bumper inserts in neutral and three degree flexion options O
- Revision Tibial Augments in eight sizes, two thicknesses and in right medial/left lateral and O right lateral/left medial options
- o Femoral Distal Augments in six sizes and two thicknesses.
The components of the subject THK System are sterile, single-use devices intended for cemented use only. They can be used with previously cleared Modular Rotating Hinge (MRH) Knee components (K994207, K002552), the Global Modular Replacement System (GMRS) (K023087), and Triathlon® Knee System components (K172634, K172326, K190991, K143396, K141056. K132624. K070095. K061521. K053514. K052917. K051948. K051146. K040267).
This document is a 510(k) Premarket Notification from the FDA regarding the "Triathlon® Hinge Knee System". It describes a medical device, specifically a knee replacement system, and outlines the non-clinical testing performed to establish its substantial equivalence to previously cleared predicate devices.
Crucially, this document states: "Clinical testing was not required as a basis for substantial equivalence."
This means that a study proving the device meets acceptance criteria involving human performance or clinical outcomes was not conducted or submitted for this 510(k) clearance due to the nature of the device (a modification/line extension of existing, cleared devices) and the regulatory pathway followed.
Therefore, I cannot provide the information requested in your prompt regarding:
- A table of acceptance criteria and reported device performance (in a clinical context)
- Sample sizes for a test set (clinical)
- Number of experts for ground truth establishment (clinical)
- Adjudication method (clinical)
- MRMC comparative effectiveness study
- Standalone (algorithm only) performance
- Type of ground truth used (clinical)
- Sample size for a training set (clinical)
- How ground truth for a training set was established (clinical)
All the testing described in the document under "Non-Clinical Testing" (pages 6-7) relates to engineering analysis, materials characterization, mechanical fatigue testing, wear analysis, biocompatibility, and shelf-life validation. These are physical and mechanical performance tests comparing the new device to the established performance characteristics of predicate devices, not studies involving human subjects or AI performance.
The document's conclusion reinforces this: "Based upon a comparison of the intended use, indications for use, design, materials and sterilization method, performance characteristics, and operational principles, the components of the subject THK System are substantially equivalent to those of the predicate devices identified in this premarket notification." The substantial equivalence is based on non-clinical data.
§ 888.3510 Knee joint femorotibial metal/polymer constrained cemented prosthesis.
(a)
Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part of a knee joint. The device limits translation or rotation in one or more planes and has components that are linked together or affined. This generic type of device includes prostheses composed of a ball-and-socket joint located between a stemmed femoral and a stemmed tibial component and a runner and track joint between each pair of femoral and tibial condyles. The ball-and-socket joint is composed of a ball at the head of a column rising from the stemmed tibial component. The ball, the column, the tibial plateau, and the stem for fixation of the tibial component are made of an alloy, such as cobalt-chromium-molybdenum. The ball of the tibial component is held within the socket of the femoral component by the femoral component's flat outer surface. The flat outer surface of the tibial component abuts both a reciprocal flat surface within the cavity of the femoral component and flanges on the femoral component designed to prevent distal displacement. The stem of the femoral component is made of an alloy, such as cobalt-chromium-molybdenum, but the socket of the component is made of ultra-high molecular weight polyethylene. The femoral component has metallic runners which align with the ultra-high molecular weight polyethylene tracks that press-fit into the metallic tibial component. The generic class also includes devices whose upper and lower components are linked with a solid bolt passing through a journal bearing of greater radius, permitting some rotation in the transverse plane, a minimal arc of abduction/adduction. This generic type of device is limited to those prostheses intended for use with bone cement (§ 888.3027).(b)
Classification. Class II.