Search Results
Found 1 results
510(k) Data Aggregation
(226 days)
QIAstat-Dx Respiratory Panel Plus:
The QIAstat-Dx Respiratory Panel Plus is a multiplexed nucleic acid test intended for use with the QIAstat-Dx system for the simultaneous in vitro qualitative detection and identification of multiple respiratory viral and bacterial nucleic acids in nasopharyngeal swabs (NPS) obtained from individuals with clinical signs and symptoms of respiratory tract infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
The following organism types and subtypes are identified using the QIAstat-Dx Respiratory Panel Plus: Adenovirus, Human Coronavirus 229E, Human Coronavirus HKU1, Human Coronavirus NL63, Human Coronavirus OC43, Human Metapneumovirus, Influenza A, Influenza A H1, Influenza A H1N1 pdm09, Influenza A H3, Influenza B, Parainfluenza Virus 1, Parainfluenza Virus 2, Parainfluenza Virus 3, Parainfluenza Virus 4, Respiratory Syncytial Virus, Human Rhinovirus/Enterovirus (not differentiated), SARS-CoV-2, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae.
Nucleic acids from viral and bacterial organisms identified by this test are generally detectable in NPS specimens during the acute phase of infection. Detecting and identifying specific viral and bacterial nucleic acids from individuals presenting with signs and symptoms of a respiratory infection aids in the diagnosis of respiratory infection, if used in conjunction with other clinical, epidemiological and laboratory findings. The results of this test should not be used as the sole basis for diagnosis, treatment or other patient management decisions.
Negative results in the presence of a respiratory illness may be due to infection with pathogens that are not detected by the test, or due to lower respiratory tract infection that is not detected by a NPS specimen.
Conversely, positive results are indicative of the presence of the identified microorganism, but do not rule out co-infection with other pathogens not detected by the QIAstat-Dx Respiratory Panel Plus. The agent(s) detected by the QIAstat-Dx Respiratory Panel Plus may not be the definite cause of disease.
The use of additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography) may be necessary when evaluating a patient with possible respiratory tract infection.
QIAstat-Dx Respiratory Panel Mini:
The QIAstat-Dx Respiratory Panel Mini is a multiplexed nucleic acid test intended for use with the QIAstat-Dx system for the simultaneous in vitro qualitative detection and identification of multiple respiratory viral nucleic acids in nasopharyngeal swabs (NPS) obtained from individuals with clinical signs and symptoms of respiratory tract infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
The following viruses are identified using the QIAstat-Dx Respiratory Panel Mini: Influenza A, Influenza B, Respiratory Syncytial Virus, Human Rhinovirus, and SARS-CoV-2.
Nucleic acids from viral organisms identified by this test are generally detectable in NPS specimens during the acute phase of infection. Detecting and identifying specific viral nucleic acids from individuals presenting with signs and symptoms of a respiratory infection aids in the diagnosis of respiratory infection, if used in conjunction with other clinical, epidemiological and laboratory findings. The results of this test should not be used as the sole basis for diagnosis, treatment or other patient management decisions.
Negative results in the presence of a respiratory illness may be due to infection with pathogens that are not detected by the test or due to lower respiratory tract infection that is not detected by a NPS specimen.
Conversely, positive results are indicative of the presence of the identified microorganism, but do not rule out co-infection with other pathogens not detected by the QIAstat-Dx Respiratory Panel Mini. The agent(s) detected by the QIAstat-Dx Respiratory Panel Mini may not be the definite cause of disease.
The use of additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography) may be necessary when evaluating a patient with possible respiratory tract infection.
The QIAstat-Dx Respiratory Panel Plus and the QIAstat-Dx Respiratory Panel Mini are multiplexed nucleic acid tests which are designed for use with the QIAstat-Dx system (currently QIAstat-Dx Analyzer 1.0 and QIAstat-Dx Analyzer 2.0). The device modification is to add the QIAstat-Dx Rise as an additional instrument for use with the QIAstat-Dx Respiratory Panel Plus and the QIAstat-Dx Respiratory Panel Mini ("QIAstat-Dx Respiratory Panels"). The QIAstat-Dx Rise is a higher throughput platform, incorporating up to eight QIAstat-Dx Analytical Modules (AM) on a small footprint. The instrument allows queuing up to 18 cartridges, which are scheduled for processing and delivered to the appropriate AM by an integrated robotic handler. The AM used with the QIAstat-Dx Rise is the same AM that can be used with the QIAstat-Dx Analyzer 1.0 or 2.0.
The modified QIAstat-Dx Respiratory Panel Plus and QIAstat-Dx Respiratory Panel Mini are identical to the QIAstat-Dx Respiratory Panel Plus (K233100) and the QIAstat-Dx Respiratory Panel Mini (K242353), respectively, with the exception of the Instructions for Use which were updated to include the assay-specific procedure for the QIAstat-Dx Rise.
The QIAstat-Dx Respiratory Panels are intended to be used with one nasopharyngeal swab (NPS) eluted in Universal Transport Media (UTM), which is not provided with the QIAstat-Dx Respiratory Panels.
All the reagents required for the complete execution of the test are pre-loaded and self-contained in a QIAstat-Dx Respiratory Panel cartridge. The user does not need to manipulate any reagents. During the test, reagents are handled by pneumatically-operated microfluidics without any direct contact with the user or the analyzer actuators.
Within the cartridge, multiple steps are automatically performed in sequence by using pneumatic pressure and a multiport valve to transfer the sample and fluids via the Transfer Chamber (TC) to their intended destinations. Following the introduction of the sample from a disposable transfer pipette, the following assay steps occur automatically and sequentially:
- Resuspension of Internal Control
- Cell lysis using mechanical and/or chemical means
- Membrane-based nucleic acid purification
- Mixing of the purified nucleic acid with lyophilized master mix reagents
- Transfer of defined aliquots of eluate/master mix to different reaction chambers
- Performance of multiplex real-time RT-PCR testing within each reaction chamber
The QIAstat-Dx Respiratory Panel Assay Definition File (ADF) automatically interprets test results and displays a summary on the instrument display screen. The detected analytes are displayed in red. All other tested but not detected analytes are listed in green. The instrument will report if an error occurs during processing, in which case the test will fail and no results will be provided (screen will show "FAIL").
The provided text describes a 510(k) premarket notification for the QIAstat-Dx Respiratory Panel Plus and QIAstat-Dx Respiratory Panel Mini, with a modification to include the QIAstat-Dx Rise instrument. The key takeaway from this document is that the FDA determined the device is substantially equivalent to previously cleared devices. Therefore, the "acceptance criteria" discussed here refer to the demonstration of equivalence to a predicate device, rather than specific performance metrics against a clinical ground truth for a new device.
Here's an analysis based on your questions:
1. A table of acceptance criteria and the reported device performance
Since this is a submission for a modification to an already cleared device, the acceptance criteria are not explicitly stated in terms of clinical performance numbers (e.g., sensitivity, specificity). Instead, the acceptance criteria are focused on demonstrating that adding the new instrument (QIAstat-Dx Rise) does not negatively impact the performance, and that the new system is "substantially equivalent" to the predicate devices.
The "reported device performance" is essentially that the studies "successfully demonstrated the equivalent performance."
Acceptance Criteria (Implied for Substantial Equivalence) | Reported Device Performance |
---|---|
Equivalence at Low Analyte Concentration | Successfully demonstrated equivalent performance |
Carryover | Successfully demonstrated equivalent performance |
Reproducibility | Successfully demonstrated equivalent performance |
Maintenance of original Intended Use/Indications for Use | Maintained the same Intended Use/Indications for Use as predicate devices |
Maintenance of device technology (specimen type, amplification/detection, controls, extraction, assay targets, operational aspects) | Maintained all technological characteristics as predicate devices |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
The document does not specify the sample size for the test set used in the "Equivalence at Low Analyte Concentration," "Carryover," or "Reproducibility" studies. It also does not mention the data provenance (country of origin, retrospective or prospective). These details would typically be found in the actual study reports, which are not included in this FDA clearance letter.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not applicable or provided in this document. For an in vitro diagnostic device like this, ground truth for clinical performance would typically be established by comparing against FDA-cleared or gold standard laboratory methods (e.g., culture, sequencing, or other highly sensitive PCR assays) rather than expert consensus on imaging or clinical findings. Since this submission focuses on establishing equivalence and not initial clinical performance, such details are not expected.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not provided and would not typically be part of a 510(k) clearance letter for an IVD device unless specific clinical adjudication was required for complex diagnostic outcomes.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
This is not applicable. The QIAstat-Dx Respiratory Panels are automated in vitro diagnostic devices for detecting nucleic acids. They do not involve human readers' interpretation of images or other data in a way that would necessitate an MRMC study or AI assistance.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
This is an in vitro diagnostic test. It is inherently a "standalone" system in its operation, as the instrument performs the test and provides a result. There is no mention of a human-in-the-loop component beyond loading the sample and reading the final result from the display screen. The device's "algorithm" (i.e., the assay's detection mechanism and interpretation software) operates without human intervention once the run starts.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
The document does not explicitly state the "ground truth" used for the analytical studies (Equivalence at Low Analyte Concentration, Carryover, Reproducibility). For such studies, the ground truth would be established by controlled laboratory experiments, where samples with known concentrations of analytes are used, and the assay's results are compared against these known inputs. For initial clinical performance, the ground truth would typically be a highly sensitive and specific reference method, but those studies are for the predicate devices, not this modification.
8. The sample size for the training set
This information is not provided. Training sets are typically associated with machine learning or AI models. While instruments like the QIAstat-Dx have underlying algorithms, they are based on established PCR principles and assay design, not a machine learning training paradigm in the way AI image analysis would be.
9. How the ground truth for the training set was established
This information is not provided and is not applicable for this type of IVD device in the context of a 510(k) modification for instrument compatibility.
Ask a specific question about this device
Page 1 of 1