Search Filters

Search Results

Found 1 results

510(k) Data Aggregation

    K Number
    K242728
    Date Cleared
    2025-07-31

    (324 days)

    Product Code
    Regulation Number
    870.2300
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K211900, K161164

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The indications for use of the BeneVision Central Monitoring System include:

    • Real time viewing of patient clinical data and alarms from compatible physiological monitors. Viewing of non-real time patient clinical data of compatible anesthesia devices (i.e. not indicated for real-time monitoring of clinical data of compatible anesthesia devices).

    • Storage and Historical review of patient clinical data and alarms from compatible physiological monitor, and anesthesia devices.

    • Printing patient data from compatible physiological monitor, and anesthesia devices.

    • Configuration of local settings as well as synchronizing settings across the network to remote compatible physiological monitors.

    • Transfer of patient clinical data and settings between several CentralStations.

    • Provides a Resting 12 Lead interpretation of previously stored data.

    The BeneVision Central Monitoring System is a networked patient monitoring system intended for use in a fixed location, installed in professional healthcare facilities to provide clinicians remote patient monitoring. The network connections between the various devices can be any combination of Ethernet (Wired), Wireless WIFI (WLAN), and Wireless WMTS.

    The BeneVision Central Monitoring System supports one or more Mindray compatible physiological monitors, anesthesia systems and will display, store, print, and transfer information received from the compatible monitors, anesthesia systems.

    The telemetry monitoring systems are designed to acquire and monitor physiological data for ambulating patients within a defined coverage area. The BeneVision Central Monitoring System supports Telemetry Systems: TMS-6016, Telepack-608, TMS60, TM80, and TM70.

    • The TMS-6016 transmitter is intended for use on Adult and Pediatric patients to monitor ECG and SpO2 physiological data.

    • The Panorama Telepack-608 transmitter is intended for use on Adult patients to monitor ECG and SpO2 physiological data.

    • The TMS60 transmitter is intended for use on Adult and Pediatric patients over three years old to monitor ECG, SpO2, NIBP and Resp physiological data. The physiological data can be reviewed locally on the display of the transmitter. The CentralStation will support ECG, Heart Rate, SpO2, NIBP, Resp, Pulse Rate, Arrhythmia analysis, QT monitoring, and ST Segment Analysis for the TMS60.

    • The TM80/TM70 telemetry monitor is intended for use on Adult and Pediatric patients over three years old to monitor ECG, SpO2, NIBP and Resp physiological data. The physiological data can be analyzed, alarmed, stored, reviewed locally on the display of the monitor, and the CentralStation can config and display the physiological parameters from the TM80/TM70.

    The BeneVision Central Monitoring System is intended for use in professional healthcare facilities under the direct supervision of a licensed healthcare practitioner.

    Device Description

    The BeneVision Central Monitoring System (CMS) is a networked patient monitoring system intended for use in healthcare settings by, or under the direction of, a physician to provide clinicians remote patient monitoring. The target patient population is adult patients and pediatrics.

    When connected to a compatible anesthesia device, BeneVision CMS can display the parameters, waveforms and alarms of the anesthesia device. The device does not contain bi-directional capabilities for the compatible anesthesia devices.

    The BeneVision CMS includes the AlarmGUARD application. AlarmGUARD supports delivering notifications of physiological and technical alarms to clinical professionals' mobile devices. AlarmGUARD is not intended for real time monitoring of patients and is not intended to act as a primary source for alarms.

    AI/ML Overview

    It appears the provided FDA 510(k) clearance letter and summary for the BeneVision Central Monitoring System (K242728) does not contain specific acceptance criteria, test results (like sensitivity/specificity, accuracy metrics), or detailed study methodologies that directly address how the device's performance meets quantitative acceptance criteria for its intended functions.

    The document primarily focuses on demonstrating substantial equivalence to a predicate device (K220058) through:

    • Comparison of Indications for Use: Showing minor differences (expanded compatibility to include anesthesia systems, but not for real-time monitoring).
    • Technological Comparisons: Highlighting changes in operating systems, host configurations, and the addition of features like Multi-Patient Viewer separation and AlarmGUARD support.
    • Performance Data Section: This section lists the types of testing conducted but does not provide the results of those tests or specific acceptance criteria met by those results. It merely states that "Software verification and validation testing was conducted" and "Verification of the BeneVision Central Monitoring System was conducted to ensure that the product works as designed. Validation was conducted to check the design and performance of the product."

    Therefore, based solely on the provided text, I cannot extract the detailed information requested in your prompt regarding acceptance criteria, reported performance, sample sizes, expert qualifications, adjudication methods, MRMC studies, standalone performance, or training set details.

    The document confirms the following regarding the study:

    • Study Type: Software verification and validation testing, along with specific bench testing.
    • Clinical Data/Animal Testing: Not applicable/not required for this submission to establish substantial equivalence. This suggests the clearance relies on non-clinical data and comparison to the predicate.
    • Ground Truth: The document implies that the ground truth for software verification and validation would be the design specifications and expected behavior of the system, rather than clinical outcomes or expert consensus on a diagnostic task. For the "Waveform Display Accuracy from compatible Anesthesia Machine," the ground truth would likely be the direct output from the anesthesia machine itself.

    What is present in the document that somewhat relates to your request:

    • "Bench Testing" section (Page 19): This lists specific tests performed:
      • AlarmGUARD IEC 60601-2-27
      • AlarmGUARD IEC 60601-1-8
      • AlarmGUARD Human Factors
      • Waveform Display Accuracy from compatible Anesthesia Machine

    To fulfill your request as best as possible with the given information, I will have to state that many details are explicitly absent from this public 510(k) summary.


    Here's a structured response based on the provided document, indicating what information is present and what is absent:

    Device Acceptance Criteria and Performance Study Summary (K242728)

    Based on the provided FDA 510(k) Clearance Letter and Summary, detailed quantitative acceptance criteria and specific performance metrics (like accuracy, sensitivity, specificity) for the BeneVision Central Monitoring System are not explicitly presented. The submission primarily relies on demonstrating substantial equivalence to a predicate device (K220058) through verification and validation of software and specific bench testing.

    The document states that "Software verification and validation testing was conducted and documentation was provided as recommended by FDA's Guidance 'Content of Premarket Submissions for Device Software Functions: Guidance for Industry and Food and Drug Administration Staff'." It also mentions that "Verification of the BeneVision Central Monitoring System was conducted to ensure that the product works as designed. Validation was conducted to check the design and performance of the product."

    1. Table of Acceptance Criteria and Reported Device Performance

    Feature/FunctionAcceptance Criteria (As Implied/Stated in Document)Reported Device Performance (As Stated in Document)
    Real-time Viewing AccuracyImplicit: Accurate display of physiological data and alarms from compatible monitors, and non-real time data from anesthesia devices."Waveform Display Accuracy from compatible Anesthesia Machine" bench testing was conducted. Specific results (e.g., % accuracy, error rates) are not provided.
    AlarmGUARD FunctionalityCompliance with relevant IEC standards for alarms and human factors."AlarmGUARD IEC 60601-2-27," "AlarmGUARD IEC 60601-1-8," and "AlarmGUARD Human Factors" testing was conducted. Specific passing metrics or performance results are not detailed.
    Software FunctionalityMeets design specifications; performs as designed; adheres to V&V requirements."Software verification and validation testing was conducted" and "product works as designed" and "design and performance... checked." No specific quantitative metrics (e.g., defect rate, uptime) are provided.
    Compatibility (Anesthesia Devices)Successful display, storage, and transfer of non-real time data from Mindray A8, A9 anesthesia systems.The system "supports" these devices and the ability to "display, store, print, and transfer information" from them. Specific performance on this compatibility is not quantitatively described beyond the mention of related bench testing.
    Technological Performance Changes (e.g., Host Configurations, Max Connections)Device operates within new specifications and maintains safety and effectiveness.Subject device moved to Windows 11 for some components, increased minimum memory/CPU for CentralStation/WorkStation, increased max connections to 128. These are documented as "No change" for performance or as new specifications that were presumably met. Performance data specific to these upgrades (e.g., latency under max load) is not provided.

    2. Sample Size Used for the Test Set and Data Provenance

    • Test Set Sample Size: Not specified in the provided document for any of the listed tests (AlarmGUARD, Waveform Display Accuracy, general software V&V).
    • Data Provenance: Not specified (e.g., country of origin, retrospective/prospective). Given that no clinical data was used or required, the "data" would be synthetic, simulated, or derived from direct device connections during bench testing.

    3. Number of Experts and Qualifications for Ground Truth

    • Not applicable / Not specified. The document does not describe the use of human experts to establish ground truth for a diagnostic task or for the performance evaluation of this central monitoring system. The focus is on software function and electro-mechanical performance validation against design specifications and international standards.

    4. Adjudication Method for the Test Set

    • Not applicable / Not specified. No adjudication method is mentioned as human reader input for a test set is not described.

    5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study

    • No. The document explicitly states that "Clinical testing is not required to establish substantial equivalence to the predicate device" and does not mention any MRMC study. This device is a central monitoring system displaying physiological data, not an AI diagnostic tool requiring MRMC studies for improved human reader performance.

    6. Standalone Performance (Algorithm Only)

    • The "performance data" section lists "Software Verification and Validation Testing" and "Bench Testing" (including "Waveform Display Accuracy from compatible Anesthesia Machine"). These tests conceptually represent 'standalone' performance in that they evaluate the device's technical functions directly. However, no specific quantitative standalone performance metrics (e.g., classification accuracy, sensitivity, specificity for any internal algorithms) are provided in this summary beyond the statement that v&v was conducted to ensure the product "works as designed."

    7. Type of Ground Truth Used

    • The ground truth for the device's performance appears to be:
      • Design Specifications: For general software verification and validation.
      • External Reference Standards/Simulators: For tests like "Waveform Display Accuracy" (e.g., comparing the displayed waveform to the known, true signal generated by a simulator or the anesthesia machine itself).
      • International Standards: For AlarmGUARD functionality (e.g., IEC 60601-2-27, IEC 60601-1-8).

    8. The Sample Size for the Training Set

    • Not applicable / Not specified. This document describes a traditional medical device (patient monitoring system software) rather than a machine learning/AI device that typically requires a distinct "training set." Therefore, no training set size is mentioned.

    9. How the Ground Truth for the Training Set Was Established

    • Not applicable / Not specified. As no training set for an AI/ML model is indicated, there is no mention of how its ground truth would be established.
    Ask a Question

    Ask a specific question about this device

    Page 1 of 1