Search Filters

Search Results

Found 3 results

510(k) Data Aggregation

    K Number
    K241766
    Manufacturer
    Date Cleared
    2025-08-27

    (433 days)

    Product Code
    Regulation Number
    870.2300
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K083325, K150620, K142244

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    QMAPP® is intended for use by professional healthcare providers for physiological/hemodynamic monitoring. The system may be used to display and analyze surface ECG (Electrocardiogram), respiration, invasive pressures, pulse oximetry (SpO2), End tidal CO2 (EtCO2), fractional flow reserve (FFR), non-invasive blood pressure (NiBP), surface body temperature, cardiac output and intra-cardiac ECG. QMAPP® provides also clinical data acquisition, medical image/data processing and analytical assessment. QMAPP® is intended for use in the areas of, but not limited to cardiology, cardiac catheterization, electrophysiology, radiology, invasive radiology. QMAPP® can be used standalone and in networked environments. The system is intended for patient/procedural data management, such as documentation, logging, reporting, trending, storing, reviewing, carrying out clinical calculations and exporting various representations of the acquired data. Data may also be acquired from and/or send to other devices, such as physiological monitoring system, information management systems, image acquisition/storage devices and other medical devices.

    Device Description

    The QMAPP® system offers a complete physiological/hemodynamic monitoring and reporting system. The system is built from three units: an Amplifier, Live Monitoring CPU and Reporting CPU. The Amplifier Unit has various sensors connected with the patient, e.g. ECG, SpO2 and NiBP. The Amplifier Unit is connected to the Live Monitoring CPU via a dedicated Ethernet connection. The acquired patient information can be visualized on a Live Monitoring CPU. Typically located in the technical room. A software application executed on the Live Monitoring CPU can visualize the patient information. Also the Amplifier Unit can be controlled, i.e. most importantly, to set acquisition and filtering parameters for the different sensors, by the Live Monitoring CPU. Optionally the Monitoring unit can be connected via a dedicated Ethernet connection to a Reporting CPU, typically located in the technical room. On the Reporting CPU a database is installed which facilitates data storage and retrieval. A software application executed on the Reporting CPU serves as a patient data management system. It can e.g. be used for analysis, calculation and reporting in various representations of patient information.
    The QMAPP® system, can operate standalone or it can be part of a typical hospital network infrastructure. The latter offers the possibility to send or receive information from and to other devices. The software has several communication modules, based on HL7 or DICOM protocols to interface with third party equipment/systems.
    • The QMAPP® system works with 3rd party 510(k) cleared SpO2 module (Covidien Nellcor, K083325), NiBP module (CAS Medical Systems, MAXNIBP ND+, e.g. used in FDA cleared device CAS Medical Systems, 740 Select, K150620) and EtCO2 sensors e.g. used in FDA cleared device CLEO Patient Monitor, K142244.

    AI/ML Overview

    The provided FDA 510(k) Clearance Letter for the QMAPP® System describes the device, its intended use, and a summary of non-clinical tests conducted to support its substantial equivalence. However, the document does not contain the specific details required to fully address your request regarding acceptance criteria and the comprehensive study that proves the device meets them.

    Here's a breakdown of what can and cannot be extracted from the provided text, and where the requested information is missing:

    Information Present in the Document:

    • Overall Device Performance: The "NON-CLINICAL TESTS" section lists various characteristics on which "Bench testing" was carried out, implicitly suggesting these are areas where performance was evaluated. The "Referenced Standards and Performance Testing" section explicitly states that the QMAPP® system "meets the requirements of following performance Standards."
    • Study Type: The studies mentioned are "Bench testing," "Usability Testing," and "Software verification and validation testing." The clearance is based on a "Traditional 510(k)" and relies on "non-clinical data."
    • Ground Truth Type (for non-clinical testing): For the performance characteristics listed (ECG, Heart rate, SpO2, NiBP, IBP, Cardiac Output, Intra cardiac ECG, Skin Temperature, ECG impedance for Rate of respiratory effort, Measurement accuracy), the "ground truth" would be established by the physical standards and reference systems used during bench testing for each specific measurement. For example, a calibrated heart rate simulator would provide the ground truth for heart rate accuracy.
    • Sample Size for Training Set: Not explicitly mentioned, but the document refers to a "software verification and validation testing," implying a dataset (likely synthetic or previously collected) was used.
    • How Ground Truth for Training Set was Established: Not explicitly mentioned.

    Missing Information (Crucial for your request):

    The document focuses on demonstrating substantial equivalence to predicate devices through technical characteristics and adherence to recognized standards. It does not present a detailed study report with specific acceptance criteria, reported performance against those criteria, or the methodology of how "ground truth" was established for clinical or test datasets in the manner you've requested for an AI/ML context.

    The QMAPP® system is a physiological/hemodynamic monitoring system, not specifically an AI/ML device that requires a comparison of algorithmic output against expert consensus on a test set, multi-reader multi-case studies, or standalone algorithm performance. The "clinical data acquisition, medical image/data processing and analytical assessment" mentioned are functions of the system, but the document does not elaborate on an AI/ML component with associated performance metrics.


    Based on the provided text, here is what can be inferred and explicitly stated, with clear indications of missing information for your request:

    1. Table of Acceptance Criteria and Reported Device Performance

    The document states that the QMAPP® system was tested against and "meets the requirements of following performance Standards." These standards themselves contain detailed acceptance criteria for various parameters. The table below excerpts the performance characteristics mentioned in the "SUBSTANTIAL EQUIVALENCE SUMMARY TABLE" and "NON-CLINICAL TESTS" sections. Crucially, the document does not provide the specific numerical acceptance criteria (e.g., minimum accuracy percentages, maximum deviations) or the actual measured performance values against those criteria in a consolidated table. Instead, it states that the device "meets the requirements" of the listed standards and has "Accuracy" values which are the specifications for the device itself, not acceptance criteria of a study.

    Acceptance Criteria (via referenced standards & device specs)Reported Device Performance (as stated in 510(k) summary)
    Electrocardiograph (ECG)Tested via Bench Testing; Meets IEC 60601-2-27:2016
    ECG Resolution24 bit
    ECG Input impedance> 2.5 MOhm
    ECG Common mode rejection> 100 dB
    ECG Sampling frequency2 – 32 KHz
    ECG Channels12
    Heart RateTested via Bench Testing; Meets performance standards
    HR MethodQRS detection
    HR Range15 – 300 bpm
    HR Accuracy± 2%
    Respiration EffortTested via Bench Testing; Meets performance standards
    Respiration MethodImpedance Pneumography
    Respiration Resolution1/min
    Respiration Range0 – 150 / Min
    Respiration Channels1
    Non-Invasive Blood Pressure (NiBP)Tested via Bench Testing; Meets IEC 80601-2-30:2018
    NiBP MethodOscillometric (CAS Max module)
    NiBP Range15 - 260 mm Hg
    NiBP Accuracy± 5 mm Hg
    Oxygen Saturation (SpO2)Tested via Bench Testing; Meets ISO 80601-2-61:2017
    SpO2 MethodNellcor Oximax
    SpO2 Range1 - 100%
    SpO2 Accuracy± 1%
    SpO2 Channels1
    Invasive Blood Pressure (IBP)Tested via Bench Testing; Meets IEC 60601-2-34:2011
    IBP MethodPressure transducer
    IBP Accuracy± 2 mm Hg or ± 1 %
    IBP Range-30 - 320 mm Hg
    IBP Channels4
    Skin TemperatureTested via Bench Testing; Meets ISO 80601-2-56:2017
    Skin Temp MethodThermistor, YSI compatible
    Skin Temp Range20° – 45° C (68° – 113° F)
    Skin Temp Accuracy± 0.1° C (± 0.18° F)
    Skin Temp Channels2
    Cardiac OutputTested via Bench Testing; Meets performance standards
    CO MethodThermo Dilution and (calculated) FICK
    CO Range0.1 – 20 L
    CO Accuracy± 0.1 L
    End Tidal CO2 (EtCO2)Tested via Bench Testing; Meets performance standards
    EtCO2 MethodLow flow Side stream
    EtCO2 Resolution0.1 mm Hg (0-49), 0.2 mm Hg (49-152)
    EtCO2 Accuracy0-40 mmHg, ± 2 mmHg; 41-70 mmHg, ± 5%; 71-100 mmHg, ± 8%; >101 10%
    Intra cardiac ECGTested via Bench Testing; Meets performance standards
    Intra Cardiac ECG MethodElectro Physiology catheter
    Intra Cardiac ECG Resolution24 Bit
    Intra Cardiac ECG Input impedance> 2.5 MOhm
    Intra Cardiac ECG Common mode rejection> 100 dB
    Intra Cardiac HR range15 – 300 bpm
    Intra Cardiac Sampling frequency2 - 32 kHz
    Intra Cardiac Channels8, 16 or 32 (bipolar) Channels
    Other General Performance
    Electromagnetic compatibility (EMC)Meets IEC 60601-1-2:2014
    Electrical safety testingMeets AAMI/ANSI EC 60601-1:2005/(R)2012 & A1:2012 C1:2009/(R)2012 & A2:2010/(R)2012
    Mechanical safety testingMeets AAMI/ANSI EC 60601-1:2005/(R)2012 & A1:2012 C1:2009/(R)2012 & A2:2010/(R)2012
    Software verification and validation testingConducted
    Usability TestingConducted

    2. Sample size used for the test set and the data provenance

    • Sample Size for Test Set: Not specified. The document only mentions "Bench testing," "Usability Testing," and "Software verification and validation testing." These are typically performed in a lab environment.
    • Data Provenance (e.g., country of origin of the data, retrospective or prospective): Not specified. Given it's bench testing, actual patient data provenance is not directly relevant for the stated tests, but the data used for software verification and validation testing (if involving patient data) is not detailed.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts

    • Number of Experts & Qualifications: Not applicable/not specified. For bench testing of physiological monitoring devices, the "ground truth" comes from calibrated testing equipment and reference signals, not expert human interpretation in the way, for example, a radiology AI would be evaluated. The "Software verification and validation testing" is also not described as relying on expert review of a patient dataset for ground truth.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set

    • Adjudication Method: Not applicable/not specified. This methodology is typically used when comparing an algorithm's output to human expert interpretations, which is not the type of testing described for this physiological monitor.

    5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    • MRMC Study: Not applicable. The QMAPP® system is described as a physiological/hemodynamic monitoring, data acquisition, and analytical assessment system. It is not presented as an AI-assisted diagnostic tool designed to improve human reader performance in interpreting images or complex clinical scenarios.

    6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done

    • Standalone Performance: The described "Bench testing" and "Software verification and validation testing" can be considered "standalone" in the sense that they evaluate the device's inherent measurement and processing capabilities without a human in the loop for interpretation, but for a physiological monitor, the ultimate "human-in-the-loop" is the clinician using the displayed information. The document does not describe an AI algorithm that operates entirely independently to make a diagnosis or prediction in the same way an AI for image analysis might.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)

    • Type of Ground Truth: For the "Bench testing" of physiological parameters, the ground truth would be established by calibrated reference standards and simulated physiological signals. For instance, a signal generator provides a known ECG waveform or blood pressure reading, and the device's measurement is compared to this known input.

    8. The sample size for the training set

    • Sample Size for Training Set: Not specified. The document mentions "Software verification and validation testing," which would involve a dataset, but its size is not detailed. There is no mention of a "training set" in the context of an AI/ML model, as the device is not presented as such.

    9. How the ground truth for the training set was established

    • How Ground Truth for Training Set was Established: Not specified. If a "training set" was used for software validation (e.g., for signal processing algorithms), the ground truth would likely be established through
      • Synthetic data: Ground truth is known by design.
      • Previously validated physiological data: Data collected with highly accurate reference devices, where the "truth" for various physiological parameters is established by the reference device's measurements.

    In summary: The FDA 510(k) clearance document for the QMAPP® System confirms that the device meets relevant performance standards through non-clinical bench testing and software validation. However, it does not provide the detailed acceptance criteria and study particulars, particularly those related to expert-adjudicated test sets, MRMC studies, or specific AI/ML training/testing methodologies, because the device is presented as a traditional physiological monitor, not an AI-powered diagnostic system.

    Ask a Question

    Ask a specific question about this device

    Why did this record match?
    Reference Devices :

    K083325, K121806, K120773, K060576

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Nellcor OxiMAX N-600X Pulse Oximetry System with N-600X Pulse Oximeter and OxiMAX Sensors and Cables is indicated for prescription use only for the continuous non-invasive monitoring of functional oxygen saturation of arterial hemoglobin (SpO₂) and pulse rate. The N-600X Pulse Oximeter is intended for use with neonatal, pediatric, and adult patients during both no motion conditions and for patients who are either well or poorly perfused, in hospital-type facilities, intra hospital transport, and home environments.

    The N-600X with SPD feature is intended for use on adults to detect patterns of desaturation that are indicative of repetitive reductions in airflow through the upper airway and into the lungs.

    For Covidien Nellcor Bedside Respiratory Patient Monitoring System with Respiration Rate Software: The Nellcor Bedside Respiratory Patient Monitoring System is a portable pulse oximeter intended for prescription use only as a continuous non-invasive monitor of arterial oxygen saturation (SpOz) and pulse rate of adult, pediatric, and neonatal patients during both no motion conditions and for patients who are well or poorly perfused. The monitoring system is intended for use in hospitals, hospital-type facilities, and during intra-hosport. The OxiMax SPD™ Alert (SPD) feature is intended only for facility-use care of adults to detect patterns of desaturation indicative of repetitive reductions in aifflow through the upper airway and into the lungs.

    The Respiration Rate parameter, when used in conjunction with the Nellcor Bedside Respiratory Patient Monitoring System and Nellcor Respiratory Sensor, is intended to be used for the continuous non-invasive monitoring of respiration rate in adult patients in hospitals and hospital-type facilities.

    The Nellcor Bedside SpOz Patient Monitoring System is indicated for the continuous noninvasive monitoring of functional oxygen saturation of arterial hemoglobin (SpO2) and pulse rate. The Nellcor Bedside SpO2 Patient Monitoring System is intended for prescription use only with neonatal, pediatric, and adult patients, during both no motion and motion conditions and for patients who are well or poorly perfused, in hospitals, hospital-type facilities, and intra-hospital transport.

    Device Description

    The OxiMAX family of pulse oximeters (including the N-600X, Nellcor Bedside Respiratory Patient Monitoring System, and Nellcor Bedside SpO2 Patient Monitoring System) provides continuous noninvasive monitoring of functional oxygen saturation of arterial hemoglobin (SpO₂) and pulse rate.

    The N-600X, Nellcor Bedside Respiratory Patient Monitoring System, and Nellcor Bedside Sp02 Patient Monitoring System are designed for continuous, non-invasive monitoring of functional oxygen saturation of arterial hemoglobin (SpO2) and pulse rate using OxiMAX pulse oximetry sensors and the DOC-10 cable.

    The Nellcor Bedside Respiratory Patient Monitoring System, Bedside SpO₂ Patient Monitoring System and the OxiMAX N-600X Pulse Oximetry System, the Nell-1 family of pulse oximeters, are technologically identical. They have the same oximetry PCBA and software.

    AI/ML Overview

    Here's a breakdown of the acceptance criteria and study details for the Covidien pulse oximeters, based on the provided text:

    Acceptance Criteria and Reported Device Performance

    The acceptance criteria here is for the pulse oximeter's accuracy in measuring SpO2 (functional oxygen saturation of arterial hemoglobin) and pulse rate under both no-motion and motion conditions. The study implicitly aims to demonstrate that the device's accuracy remains within acceptable clinical ranges despite motion. The specific numerical acceptance criteria (e.g., standard deviation or RMS error) are not explicitly stated in the provided text as a table of criteria values. However, the study results confirm that the device was "validated for accuracy."

    Metric / ConditionAcceptance Criteria (Implicit)Reported Device Performance (Summary)
    SpO2 Accuracy (Motion)Device maintains acceptable clinical accuracyValidated for accuracy in the presence of motion in human blood studies.
    SpO2 Accuracy (No Motion)Device maintains acceptable clinical accuracyInherited from previous clearances and confirmed.
    Pulse Rate Accuracy (Motion)Device maintains acceptable clinical accuracyValidated for accuracy in the presence of motion in human blood studies. Additional bench testing for 25-250 bpm range.
    Pulse Rate Accuracy (No Motion)Device maintains acceptable clinical accuracyInherited from previous clearances and confirmed.

    Study Details

    1. Sample Size used for the test set and the data provenance:

      • Test Set Sample Size: The exact number of healthy adult volunteers for the invasive hypoxia study is not specified, but the study was conducted on "healthy, well-perfused adults."
      • Data Provenance: The study was a prospective, induced hypoxia study conducted by Covidien. The country of origin of the data is not specified, but the device manufacturer (Covidien) has addresses in Boulder, CO (USA) and Galway, IRELAND. The study description implies it was performed under medical supervision.
    2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

      • The document does not mention the use of human experts to establish ground truth for this medical device study. Instead, the ground truth was established by objective medical measurements:
        • SpO2 ground truth: SaO2 values from a CO-Oximeter (a laboratory instrument).
        • Pulse Rate ground truth: ECG values.
    3. Adjudication method for the test set:

      • No adjudication method (like 2+1 or 3+1 consensus) was used, as the ground truth was established by direct instrumental measurements (CO-Oximeter and ECG) rather than subjective expert interpretation.
    4. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

      • No MRMC study was done, as this is a pulse oximetry device, not an AI-assisted diagnostic imaging or interpretation tool. The study focuses on the device's accuracy against objective measurements, not human reader performance.
    5. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:

      • Yes, the primary study detailed is essentially a standalone performance evaluation of the pulse oximeter's algorithm. The device measures SpO2 and pulse rate independently and then these measurements are compared to the ground truth from the CO-Oximeter and ECG. Human interpretation is not part of the measurement process being tested.
    6. The type of ground truth used:

      • Objective Instrumental Measurements:
        • For SpO2: SaO2 values obtained from a laboratory CO-Oximeter.
        • For Pulse Rate: ECG values.
    7. The sample size for the training set:

      • This document describes a clinical validation study for a medical device trying to expand its indications for use. It does not mention a "training set" in the context of machine learning, as this is not an AI/ML device that requires explicit training data for its core functionality. The device's algorithms for SpO2 and pulse rate measurement would have been developed and refined during its initial design process, but the details of that development (including any "training" data for the algorithms themselves) are not part of this 510(k) submission summary. The "training" in this context would implicitly refer to the data used during the initial development and validation of the N-600X and Nell-1 family of oximeters prior to this specific K-K123581 submission.
    8. How the ground truth for the training set was established:

      • Not applicable, as this submission does not detail a machine learning model's training process. The ground truth for the validation study was established using a CO-Oximeter for SpO2 and ECG for pulse rate, as mentioned above.
    Ask a Question

    Ask a specific question about this device

    K Number
    K111933
    Manufacturer
    Date Cleared
    2012-03-15

    (251 days)

    Product Code
    Regulation Number
    868.2375
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K051896, K083325, K012891

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    For Software: The Covidien Nellcor™ Respiration Rate Software, when used in conjunction with a Nellcor pulse oximeter and a Nellcor Respiration Rate Sensor, is intended to be used for the continuous, non-invasive monitoring of respiration rate in adults in hospitals and hospital-type facilities.

    For Sensor: The Nellcor™ Adult Respiratory Sensor, when used in conjunction with a Nellcor pulse oximeter and the Nellcor Respiration Rate Software Application, is indicated for single patient use when continuous noninvasive arterial oxygen saturation, pulse rate and respiration rate monitoring are required for adult patients weighing more than 30 kg.

    Device Description

    The Covidien Nellcor™ Respiration Rate Software allows for the continuous noninvasive monitoring of arterial oxygen saturation (SpO2), pulse rate and respiration rate using a single sensor. The previously cleared Nellcor N-600x pulse oximeter collects the photoplethysmography signal from the patient via the Covidien Nellcor™ Adult Respiratory sensor attached to the patient. This signal is processed by the pulse oximeter to determine SpO2 and pulse rate. Data is then transmitted from the pulse oximeter to a medical grade PC via a data port.

    The Respiration Rate Software (RRS) is installed on a medical-grade PC and utilizes data from the pulse oximeter to calculate respiration rate. The RRS also provides an interactive user interface to display respiration rate, trending, system status and alarm information to the user. The RRS also allows for the collection and storage of data on the medical grade PC for subsequent export.

    AI/ML Overview

    Here's an analysis of the acceptance criteria and the study proving the device meets them, based on the provided text:

    Acceptance Criteria and Device Performance

    Acceptance CriteriaReported Device Performance
    Respiration Rate Monitoring Range (Adults)4-40 breaths/minute
    Respiration Rate Accuracy±1 breath per minute
    Non-invasive MonitoringAchieved (uses photoplethysmography via a single sensor)
    Continuous MonitoringAchieved
    Intended PopulationAdults (≥30 kg, in hospitals and hospital-type facilities)
    Substantial Equivalence to Predicate DeviceDemonstrated with respect to safety, effectiveness, and performance.

    Study Details

    2. Sample Size Used for the Test Set and Data Provenance:

    • Sample Size: Not explicitly stated. The text mentions "Clinical validation studies on healthy adult volunteers and on subjects from the hospital general care floor."
    • Data Provenance:
      • Country of Origin: Not explicitly stated.
      • Retrospective or Prospective: Prospective, as it refers to "clinical validation studies... were conducted."

    3. Number of Experts Used to Establish Ground Truth for the Test Set and Their Qualifications:

    • Number of Experts: Not specified.
    • Qualifications: Not specified. The gold standard is mentioned, but not how experts interacted with it to establish ground truth for the device's assessment.

    4. Adjudication Method for the Test Set:

    • Adjudication Method: Not specified.

    5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done:

    • MRMC Study: No, an MRMC study comparing human readers with and without AI assistance was not done. The study focused on the device's standalone accuracy compared to a gold standard and a predicate device.

    6. If a Standalone (Algorithm Only Without Human-in-the-Loop Performance) was Done:

    • Standalone Performance: Yes. The "Respiration Rate Software algorithm" was evaluated for its accuracy. The text states, "The studies demonstrated the accuracy of the Respiration Rate Software algorithm was as good at the predicate, transthoracic impendence measurements, when both were compared a gold standard."

    7. The Type of Ground Truth Used:

    • Ground Truth: "Gold standard." While the specific nature of this gold standard is not detailed, in the context of respiration rate monitoring, it typically refers to direct observation, capnography, or a highly accurate clinical measurement method.

    8. The Sample Size for the Training Set:

    • Sample Size: Not provided. The document focuses on performance testing rather than algorithm development/training data.

    9. How the Ground Truth for the Training Set was Established:

    • Ground Truth Establishment: Not provided. As with the training set size, the document does not detail the specifics of the algorithm's development or the ground truth used for its training.
    Ask a Question

    Ask a specific question about this device

    Page 1 of 1