The GenMark ePlex® Blood Culture Identification Gram-Negative (BCID-GN) Panel is a qualitative nucleic acid multiplex in vitro diagnostic test intended for use on GenMark's ePlex Instrument for simultaneous qualitative detection and identification of multiple potentially pathogenic gram-negative bacterial organisms and select determinants associated with antimicrobial resistance in positive blood culture. In addition, the ePlex BCID-GN Panel is capable of detecting several gram-positive bacteria (Pan Gram-Positive assay) and several Candida species (Pan Candida assay). The ePlex BCID-GN Panel is performed directly on blood culture samples identified as positive by a continuous monitoring blood culture system and which contain gram-negative organism.
The following bacterial organisms and genes associated with antibiotic resistance are identified using the ePlex BCID-GN Panel: Acinetobacter baumannii, Bacteroides fragilis, Citrobacter, Cronobacter sakazakii. Enterobacter cloacae complex, Enterobacter (non-cloacae complex), Escherichia coli, Fusobacterium necrophorum, Fusobacterium nucleatum, Haemophilus influenzae, Klebsiella oxytoca, Klebsiella pneumoniae group, Morganella morganii, Neisseria meningitidis, Proteus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella, Serratia, Serratia marcescens, Stenotrophomas maltophilia, СТХ-М (blactх-м), IMP (blамм) , КРС (blakec) , NDM (bland), OXA (blaoxa) (OXA-23 and OXA-48 groups only), and VIM (blaviм).
The ePlex BCID-GN Panel contains assays for the detection of genetic determinants associated with resistance to antimicrobial agents including CTX-M(blactx.M), which is associated with resistance to extended spectrum beta-lactamase (ESBL)-mediated resistance to penicillins, cephalosporins and monobactams, as well as OXA (blaoxA) (OXA-23 and OXA-48 groups only), KPC (blakpc), and metallo-beta-lactamases IMP (blavM), VIM (blavM), and NDM (blaNDM), which is associated with carbapenemase-mediated resistance. The antimicrobial resistance gene detected may or may not be associated with the agent responsible for disease. Negative results for these select antimicrobial resistance assays do not indicate susceptibility, as there are multiple mechanisms of resistance in gram-negative bacteria.
The ePlex BCID-GN Panel also contains targets designed to detect a broad range of organisms with a potentially misleading Gram stain result or organisms that may be missed by Gram staining altogether, for example in the case of co-infections. These include a broad Pan Gram-Positive assay (which is designed to detect Bacillus cereus group, Bacillus subtilis group, Enterococcus, Staphylococcus, and Streptococcus), as well as a Pan Candida assay, which is designed to detect four Candida species: Candida albicans, Candida glabrata, Candida krusei, and Candida parapsilosis.
The detection and identification of specific bacterial and fungal nucleic acids from individuals exhibiting signs and/or symptoms of bloodstream infection aids in the diagnosis of bloodstream infection when used in conjunction with other clinical information. The results from the ePlex BCID-GN Panel are intended to be interpreted in conjunction with Gram stain results and should not be used as the sole basis for diagnosis, treatment, or other patient management decisions.
Negative results in the setting of a suspected bloodstream infection may be due to infection with pathogens that are not detected by this test. Positive results do not rule out co-infection with other organisms; the organism(s) detected by the ePlex BCID-GN Panel may not be the definite cause of disease. Additional laboratory testing (e.g. sub-culturing of positive blood cultures for identification of organisms not detected by ePlex BCID-GN Panel and for susceptibility testing, differentiation of mixed growth, and association of antimicrobial resistance marker genes to a specific organism) and clinical presentation must be taken into consideration in the final diagnosis of bloodstream infection.
The ePlex Blood Culture Identification Gram-Negative (BCID-GN) Panel is based on the principles of competitive nucleic acid hybridization using a sandwich assay format, wherein a single-stranded target binds concurrently to a sequence-specific solution-phase signal probe and a solid-phase electrode-bound capture probe. The test employs nucleic acid extraction, target amplification via polymerase chain reaction (PCR) or reverse transcription PCR (RT-PCR) and hybridization of target DNA. In the process, the double-stranded PCR amplicons are digested with exonuclease to generate single-stranded DNA suitable for hybridization.
Nucleic acid extraction from biological samples occurs within the cartridge via cell lysis, nucleic acid capture onto magnetic beads, and release for amplification. The nucleic acid extraction is processed through microfluidic liquid handling. Once the nucleic acid targets are captured and inhibitors are washed away, the magnetic particles are delivered to the electrowetting environment on the printed circuit board (PCB) and the targets are eluted from the particles and amplified.
During hybridization, the single-stranded target DNA binds to a complementary, single-stranded capture probe immobilized on the working gold electrode surface. Single-stranded signal probes (labeled with electrochemically active ferrocenes) bind to specific target sequence / region adjacent to the capture probe. Simultaneous hybridization of target to signal probes and capture probe is detected by alternating current voltammetry (ACV). Each working electrode on the array contains specific capture probes, and sequential analysis of each electrode allows detection of multiple analyte targets.