(28 days)
BD Insyte™ Autoguard™ Shielded IV Catheter is intended to be inserted into a patient's peripheral vascular system for short term use to sample blood, monitor blood pressure, or administer fluids. This device may also be used to facilitate the placement of guidewires and other vascular access devices such as catheters without pre-attached hubs. This device may be used for any patient population with consideration given to adequacy of vascular anatomy, procedure being performed, fluids being infused, and duration of therapy. The 22-18 GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
BD Insyte™ Autoguard™ BC Shielded IV Catheter is intended to be inserted into a patient's peripheral vascular system for short term use to sample blood, monitor blood pressure, or administer fluids. This device may be used for any patient population with consideration given to adequacy of vascular anatomy, procedure being performed, fluids being infused, and duration of therapy. The 22-18GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
BD Insyte™ Autoguard™ BC Pro Shielded IV Catheter is intended to be inserted into a patient's peripheral vascular system for short term use to sample blood, monitor blood pressure, or administer fluids. This device may be used for any patient population with consideration given to adequacy of vascular anatomy, procedure being performed, fluids being infused, and duration of therapy. The 22-18 GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
BD Insyte™ Autoguard™ Shielded IV Catheter is an over-the-needle, intravascular (IV) catheter. This device includes a radiopaque BD Vialon™ Catheter Material, a needle, a grip with button, a flash chamber with vent plug, and a barrel. The needle and catheter are protected by a needle cover.
The 24-20 GA (0.7-1.1 mm) devices have BD Instaflash™ Needle Technology, allowing for immediate visualization of blood along the catheter. The flash chamber provides confirmation that the device has entered the vessel.
BD Insyte™ Autoguard™ Shielded IV Catheter incorporates BD Autoguard™ Push-button Shielding Technology which is activated when the button is depressed. A spring mechanism retracts the needle and flash chamber into the barrel, fully encasing the needle and reducing the risk of accidental needlestick injury.
BD Insyte™ Autoguard™ Shielded IV Catheter is available with or without wings. The catheter hub and wings are color coded to indicate catheter gauge size (24 GA (0.7 mm) = Yellow, 22 GA (0.9 mm) = Blue, 20 GA (1.1 mm) = Pink, 18 GA (1.3 mm) = Green, 16 GA (1.7 mm) = Grey, 14 GA (2.1 mm) = Orange).
BD Insyte™ Autoguard™ Shielded IV Catheter facilitates the introduction of guidewires and other vascular access devices. The following labeled gauge sizes correspond to the following inside diameter (ID): 24 GA (0.40 mm ID), 22 GA (0.55 mm ID), 20 GA (0.7 mm ID), 18 GA (0.8 mm ID), 16 GA (1.2 mm ID), and 14 GA (1.6 mm ID).
The 22-18 GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
BD Insyte™ Autoguard™ BC Shielded IV Catheter is an over-the-needle, intravascular (IV) catheter with blood control technology. This device includes a radiopaque BD Vialon™ Catheter Material, a needle, a grip with button, a flash chamber with vent plug, and a barrel. The needle and catheter are protected by a needle cover.
The blood control technology is designed to stop the flow of blood from the catheter hub until the initial Luer connection is made. Once the connection is made, fluids or blood can flow through the catheter hub in either direction.
The 24-18 GA (0.7-1.1 mm) devices have BD Instaflash™ Needle Technology, allowing for immediate visualization of blood along the catheter. The flash chamber provides confirmation that the device has entered the vessel.
BD Insyte™ Autoguard™ BC Shielded IV Catheter incorporate BD Autoguard™ Push-button Shielding Technology which is activated when the button is depressed. A spring mechanism retracts the needle and flash chamber into the barrel, fully encasing the needle and reducing the risk of accidental needlestick injury.
BD Insyte™ Autoguard™ BC Shielded IV Catheter is available with or without wings. The catheter hub and wings are color coded to indicate the catheter gauge size (24 GA (0.7 mm) = Yellow, 22 GA (0.9 mm) = Blue, 20 GA (1.1 mm) = Pink, 18 GA (1.3 mm) = Green, 16 GA (1.7 mm) = Grey).
The 22-18 GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
BD Insyte™ Autoguard™ BC Pro Shielded IV Catheter is an over-the-needle, intravascular (IV) catheter with blood control technology. This device includes a radiopaque BD Vialon™ Catheter Material, a needle, a grip with button, a flash chamber with vent plug, and a barrel. The needle and catheter are protected by a needle cover.
The blood control technology is designed to stop the flow of blood from the catheter hub until the initial Luer connection is made. Once the connection is made, fluids or blood can flow through the catheter hub in either direction.
The 24-18 GA (0.7-1.1 mm) devices have BD Instaflash™ Needle Technology, allowing for immediate visualization of blood along the catheter. The flash chamber provides confirmation that the device has entered the vessel.
BD Insyte™ Autoguard™ BC Pro Shielded IV Catheter incorporate BD Autoguard™ Push-button Shielding Technology which is activated when the button is depressed. A spring mechanism retracts the needle and flash chamber into the barrel, fully encasing the needle and reducing the risk of accidental needlestick injury.
BD Insyte™ Autoguard™ BC Pro Shielded IV Catheter is available with or without wings. The catheter hub and wings are color coded to indicate the catheter gauge size (24 GA (0.7 mm) = Yellow, 22 GA (0.9 mm) = Blue, 20 GA (1.1 mm) = Pink, 18 GA (1.3 mm) = Green, 16 GA (1.7 mm) = Grey).
The 22-18 GA (0.9-1.3 mm) devices are suitable for use with power injectors set to a maximum pressure of 300 psi (2068 kPa).
This document is a 510(k) clearance letter for three IV catheter devices, indicating that they are substantially equivalent to a previously cleared predicate device (K201075). It describes the changes made (new performance specifications and revised IFU) and provides a summary of performance tests conducted.
However, it does not contain the detailed acceptance criteria and reported device performance information that you specifically asked for in a table, nor does it describe a study that "proves the device meets the acceptance criteria" in the format of a clinical trial or algorithm validation study. The document primarily focuses on demonstrating substantial equivalence to a predicate device, which often relies on bench testing and comparisons of technological characteristics, rather than extensive clinical studies or AI algorithm performance validation.
Therefore, I cannot provide a table of acceptance criteria and reported device performance from this document because it is not present. Similarly, information regarding sample sizes for test/training sets, data provenance, expert ground truth adjudication for AI, MRMC studies, standalone algorithm performance, or training set ground truth establishment is not applicable or not provided within this 510(k) clearance document, as it pertains to a physical medical device (IV catheter) and not an AI/ML-driven device.
The study described to demonstrate substantial equivalence consists of bench testing to verify new performance specifications and ensuring compliance with relevant ISO and ASTM standards.
Here's an overview of the information that is available in relation to performance:
1. Table of Acceptance Criteria and Reported Device Performance:
- Not provided in this document. The document states that "the subject device met all predetermined acceptance criteria for the above-listed performance tests," but it does not specify what those acceptance criteria were (e.g., specific thresholds or ranges for frequency response, kink resistance, or blood fill time). It also does not present the numerical results ("reported device performance") of these tests.
2. Sample size used for the test set and the data provenance:
- Not applicable / Not provided. The document describes bench testing of physical devices, not an AI/ML system or a clinical study with a "test set" of patients or data in the context of AI validation.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
- Not applicable / Not provided. This information is relevant for AI/ML device validation and is not present for this physical medical device.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set:
- Not applicable / Not provided. This information is relevant for AI/ML device validation and is not present for this physical medical device.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:
- No. This is not an AI/ML device, so an MRMC study is not relevant.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:
- No. This is not an AI/ML device.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc):
- Not applicable / Not provided. For the performance tests listed (Frequency Response, Kink Resistance, Blood Fill Time, Catheter Separation Force), the "ground truth" would be the direct measurements obtained from the physical properties of the devices themselves, compared against pre-defined engineering specifications.
8. The sample size for the training set:
- Not applicable / Not provided. This is not an AI/ML device.
9. How the ground truth for the training set was established:
- Not applicable / Not provided. This is not an AI/ML device.
Summary of Performance Tests and Compliance (as described in the document):
The document states that a risk analysis was conducted to assess the impact of modifications. When technological characteristics were identical to the predicate, results from the predicate were applied. For other aspects, the following tests were conducted:
BD Internal Requirements:
- Frequency Response Testing: To support blood pressure monitoring indications.
- Kink Resistance Testing: To support blood pressure monitoring indications.
- Blood Fill Time Testing: To support blood sampling indications.
- Catheter Separation Force: (No specific indication mentioned, but likely related to structural integrity during withdrawal)
Compliance with Standards Testing:
- Luer Testing: According to ISO 80369-7 (Small-bore connectors for liquids and gases in healthcare applications).
- Packaging Testing: According to ISO 11607-1, ASTM F2096-11 (for gross leaks), and ASTM F88/F88M-15 (for seal strength).
- Biocompatibility: According to ISO 10993-1 (general biological evaluation) and ISO 10993-5 (for in vitro cytotoxicity).
Conclusion: The document explicitly states: "Per the design control requirements specified in 21 CFR §820.30, the subject device met all predetermined acceptance criteria for the above-listed performance tests, demonstrating substantial equivalence to the predicate devices." This indicates that the tests were performed and the results aligned with the internal and regulatory specifications, affirming the device's substantial equivalence.
§ 880.5200 Intravascular catheter.
(a)
Identification. An intravascular catheter is a device that consists of a slender tube and any necessary connecting fittings and that is inserted into the patient's vascular system for short term use (less than 30 days) to sample blood, monitor blood pressure, or administer fluids intravenously. The device may be constructed of metal, rubber, plastic, or a combination of these materials.(b)
Classification. Class II (performance standards).