AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The ACUSON Sequoia and Sequoia Select ultrasound imaging systems are intended to provide images of, or signals from, inside the body by an appropriately trained healthcare professional in a clinical setting for the following applications: Fetal, Abdominal, Pediatric, Neonatal Cephalic, Small Parts, OB/GYN (useful for visualization of the ovaries, follicles, uterus and other pelvic structures), Cardiac, Transesophageal, Pelvic, Vascular, Adult Cephalic, Musculoskeletal and Peripheral Vascular applications.

The system supports the Ultrasonically-Derived Fat Fraction (UDFF) measurement tool to report an index that can be useful as an aid to a physician managing adult and pediatric patients with hepatic steatosis.

The system also provides the ability to measure anatomical structures for fetal, abdominal, pediatric, small organ, cardiac, transrectal, transvaginal, peripheral vessel, musculoskeletal and calculation packages that provide information to the clinician that may be used adjunctively with other medical data obtained by a physician for clinical diagnosis purposes.

The ACUSON Origin and Origin ICE ultrasound imaging systems are intended to provide images of, or signals from, inside the body by an appropriately trained healthcare professional in a clinical setting for the following applications: Fetal, Abdominal, Pediatric, OB/GYN (useful for visualization of the ovaries, follicles, uterus and other pelvic structures), Cardiac, Transesophageal, Intracardiac, Vascular, Adult Cephalic, and Peripheral Vascular applications.

The catheter is intended for intracardiac and intra-luminal visualization of cardiac and great vessel anatomy and physiology as well as visualization of other devices in the heart of adult and pediatric patients. The catheter is intended for imaging guidance only, not treatment delivery, during cardiac interventional percutaneous procedures.

The system also provides the ability to measure anatomical structures for fetal, abdominal, pediatric, cardiac, peripheral vessel, and calculation packages that provide information to the clinician that may be used adjunctively with other medical data obtained by a physician for clinical diagnosis purposes.

Device Description

The ACUSON Sequoia, Sequoia Select, Origin, and Origin ICE Diagnostic Ultrasound Systems (software version VC10) are multi-purpose, mobile, software-controlled, diagnostic ultrasound systems with an on-screen display of thermal and mechanical indices related to potential bio- effect mechanisms. The function of these ultrasound systems is to transmit, receive, process ultrasound echo data (distance and intensities information about body tissue) in various modes of operation and display it as ultrasound imaging, anatomical and quantitative measurements, calculations, analysis of the human body and fluid flow, etc. These ultrasound systems use a variety of transducers to provide imaging in all standard acquisition modes and also have comprehensive networking and DICOM capabilities.

AI/ML Overview

The provided FDA 510(k) clearance letter and summary discuss the ACUSON Sequoia, Sequoia Select, Origin, and Origin ICE Diagnostic Ultrasound Systems. This document indicates a submission for software feature enhancements and workflow improvements, including an "AI Measure and AI Assist workflow efficiency feature" and "Liver Elastography optimization."

Here's an analysis of the acceptance criteria and the study information provided:

Acceptance Criteria and Reported Device Performance

The submission focuses on enhancements to existing cleared devices rather than a de novo AI device. Therefore, the "acceptance criteria" discussed are primarily related to the performance of the Liver Elastography optimization using phantom testing.

Acceptance CriteriaReported Device Performance
Liver Elastography Optimization: The system's performance in measuring stiffness within calibrated elasticity phantoms for pSWE, Auto pSWE, and 2D SWE modes must meet manufacturer's accuracy and variability criteria.The verification results for Liver Elastography optimization using calibrated elasticity phantoms met the acceptance criteria for accuracy and variability. Specific numerical values for accuracy and variability are not provided in this document.
Software Feature Enhancements and Workflow Improvements (including AI Measure and AI Assist): The modifications should not raise new or different questions of safety and effectiveness, and the features should continue to meet their intended use."All pre-determined acceptance criteria were met." The document states that the modifications do not raise new or different questions of safety and effectiveness, and the devices continue to meet their intended use. Specific performance metrics for the AI Measure and AI Assist features themselves are not detailed as quantitative acceptance criteria in this document.
General Device Safety and Effectiveness: Compliance with relevant medical device standards (e.g., IEC 60601 series, ISO 10993-1, IEC 62304, ISO 13485) and FDA guidance.The device complies with a comprehensive list of international and FDA standards, and non-clinical verification testing addressed system-level requirements, design specifications, and risk control measures.

Study Details for Liver Elastography Optimization (SWE Performance Testing)

The primary study mentioned in the document for performance evaluation is related to the Liver Elastography optimization.

  1. Sample Size Used for the Test Set and the Data Provenance:

    • Test Set: Calibrated elasticity phantoms. The specific number of phantoms used is not stated beyond "calibrated elasticity phantoms."
    • Data Provenance: Not explicitly stated, but implies laboratory testing using commercially available or manufacturer-certified phantoms. Transducers listed were DAX, 5C1, 9C2, 4V1, and 10L4.
  2. Number of Experts Used to Establish the Ground Truth for the Test Set and the Qualifications of those Experts:

    • Ground Truth Establishment: The ground truth for the test set (phantom stiffness) was established by the phantom manufacturer, as they were "calibrated elasticity phantoms certified by the phantom manufacturer."
    • Number/Qualifications of Experts: The document does not specify the number or qualifications of experts involved in the phantom's certification process or in the actual testing of the Siemens device. The testing appears to be objective, relying on the calibrated properties of the phantoms.
  3. Adjudication Method for the Test Set:

    • Adjudication Method: Not applicable. Phantom testing typically relies on quantitative measurements against known phantom properties, not human adjudication of results.
  4. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done:

    • MRMC Study: No, an MRMC comparative effectiveness study was not conducted according to this document. The submission focuses on technical enhancements and phantom validation for elastography, and system safety/effectiveness.
  5. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done:

    • Standalone Performance: The "SWE Performance Testing" with phantoms could be considered a form of standalone performance assessment as it evaluates the device's measurement capabilities against a known standard. However, the AI Measure and AI Assist features are described as "workflow efficiency features" where measurements are "automatically launched" after classification, implying an interaction with a human user rather than a fully standalone diagnostic output. No specific standalone performance metrics for the AI Measure/Assist components are provided.
  6. The Type of Ground Truth Used:

    • Ground Truth: For the elastography testing, the ground truth was the known stiffness values of the calibrated elasticity phantoms.
  7. The Sample Size for the Training Set:

    • Training Set Sample Size: The document does not provide information about a training set size for the AI Measure and AI Assist features or the elastography optimization. This type of 510(k) submission typically focuses on validation and verification of changes to an already cleared product, rather than detailing the initial development or training data for AI algorithms.
  8. How the Ground Truth for the Training Set Was Established:

    • Training Set Ground Truth: Not applicable, as information on a specific training set is not provided in this document.

Summary regarding AI components:

While the document mentions "AI Measure" and "AI Assist" as workflow efficiency features (e.g., launching relevant measurements after cardiac view classification), it does not provide detailed performance metrics, test set sizes, ground truth establishment, or clinical study information specifically for these AI components. The 510(k) emphasizes that these are "software feature enhancements and workflow improvements" that, along with other changes, do not raise new questions of safety and effectiveness, leading to substantial equivalence with the predicate device. The only detailed "performance testing" described is for the Liver Elastography optimization using phantoms. This suggests that the AI features themselves might have been validated through internal software verification and validation activities that are not detailed in this public summary, or their impact on diagnostic performance was considered incremental and not requiring specific clinical comparative studies for this particular submission.

§ 892.1550 Ultrasonic pulsed doppler imaging system.

(a)
Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to determine stationary body tissue characteristics, such as depth or location of tissue interfaces or dynamic tissue characteristics such as velocity of blood or tissue motion. This generic type of device may include signal analysis and display equipment, patient and equipment supports, component parts, and accessories.(b)
Classification. Class II.