AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

ViewFlex™ Xtra ICE Catheter
The ViewFlex™ Xtra ICE Catheter is indicated for use in adult and adolescent pediatric patients to visualize cardiac, structures, blood flow and other devices within the heart.

ViewFlex™ Eco Reprocessed ICE Catheter
The ViewFlex™ Eco Reprocessed Catheter is indicated for use in adult and adolescent pediatric patients to visualize cardiac structures, blood flow and other devices within the heart.

Advisor™ HD Grid Mapping Catheter, Sensor Enabled™
The Advisor™ HD Grid Mapping Catheter, Sensor Enabled™, is indicated for multiple electrode electrophysiological mapping of cardiac structures in the heart, i.e., recording or stimulation only. This catheter is intended to obtain electrograms in the atrial and ventricular regions of the heart.

Advisor™ HD Grid X Mapping Catheter, Sensor Enabled™
The Advisor™ HD Grid X Mapping Catheter, Sensor Enabled™, is indicated for multiple electrode electrophysiological mapping of cardiac structures in the heart, i.e., recording or stimulation only. This catheter is intended to obtain electrograms in the atrial and ventricular regions of the heart.

Agilis™ NxT Steerable Introducer
The Agilis™ NxT Steerable Introducer is indicated for the introduction of various cardiovascular catheters into the heart, including the left side of the heart, during the treatment of cardiac arrhythmias.

Agilis™ NxT Steerable Introducer Dual-Reach™
The Agilis™ NxT Steerable Introducer Dual-Reach™ is indicated for the introduction of various cardiovascular catheters into the heart, including the left side of the heart, during the treatment of cardiac arrhythmias.

Device Description

The Agilis™ NxT Steerable Introducer Dual-Reach™ is a sterile, single-use device that con-sists of a dilator and steerable introducer, which is designed to provide flexible catheter positioning in the cardiac anatomy. The inner diameter of the steerable introducer is 13F. The steerable introducer includes a hemostasis valve to minimize blood loss during catheter intro-duction and/or exchange. It has a sideport with three-way stopcock for air or blood aspiration, fluid infusion, blood sampling, and pressure monitoring. The handle is equipped with a rotating collar to deflect the tip clockwise ≥180° and counterclockwise ≥90°. The steerable introducer features distal vent holes to facilitate aspiration and minimize cavitation and a radiopaque tip marker to improve fluoroscopic visualization.

AI/ML Overview

This FDA 510(k) clearance letter (K251211) and its accompanying 510(k) summary pertain to a change in workflow for several existing cardiovascular catheters, specifically allowing for a "Zero/Low Fluoroscopy Workflow."

The key phrase here is "Special 510(k) – Zero/Low Fluoroscopy Workflow". This type of submission is for modifications to a previously cleared device that do not significantly alter its fundamental technology or intended use, but rather introduce a change in how it's used or processed.

Crucially, this submission does NOT describe a new AI/software device that requires extensive performance testing against acceptance criteria in the manner you've outlined for AI/ML devices. Instead, it's about demonstrating that existing devices, when used with a new, less-fluoroscopy-dependent workflow, remain as safe and effective as before.

Therefore, many of the questions you've asked regarding acceptance criteria, study details, ground truth, and expert adjudication are not applicable to the information provided in this 510(k) document. The document explicitly states:

  • "Bench-testing was not necessary to validate the Clinical Workflow modifications."
  • "Substantial Equivalence of the subject devices to the predicate devices using the zero/low fluoroscopy workflow has been supported through a summary of clinical data across multiple studies in which investigators used alternative visualization methods."

This indicates that the "study" proving the device (or rather, the new workflow) meets acceptance criteria is a summary of existing clinical data where alternative visualization methods were already employed, rather than a prospective, controlled study of a new AI algorithm.

Based on the provided document, here's what can be answered:

1. A table of acceptance criteria and the reported device performance:

  • Acceptance Criteria: The implicit acceptance criterion is that the devices, when used with "zero/low fluoroscopy workflow," maintain substantial equivalence to their predicate devices in terms of safety and effectiveness. This means they must continue to perform as intended for visualizing cardiac structures, blood flow, mapping, or introducing catheters.
  • Reported Device Performance: The document states that "Substantial Equivalence... has been supported through a summary of clinical data across multiple studies in which investigators used alternative visualization methods." This implies that the performance (e.g., adequate visualization, successful mapping, successful catheter introduction) was maintained. Specific quantitative metrics of performance (e.g., accuracy, sensitivity, specificity, or inter-reader agreement for a diagnostic AI) are not provided or applicable here as this is not an AI/ML diagnostic clearance.

2. Sample size used for the test set and the data provenance:

  • Sample Size: Not specified. The document refers to "a summary of clinical data across multiple studies." This suggests an aggregation of results from existing (likely retrospective) patient data where alternative visualization techniques (allowing for "zero/low fluoroscopy") were already utilized clinically. It's not a new, single, prospectively designed test set for an AI algorithm.
  • Data Provenance: Not specified regarding country of origin or specific patient demographics. It is implied to be clinical data collected from studies where these types of procedures were performed using alternative visualization. The data would be retrospective as it's a "summary of clinical data" that already exists.

3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

  • Not applicable in the context of this 510(k). Ground truth in an AI/ML context typically refers to adjudicated labels for images or signals. Here, the "ground truth" is inferred from standard clinical practice and outcomes in the historical data summarized. There's no mention of a specific expert panel for new ground truth establishment for a diagnostic AI.

4. Adjudication method (e.g., 2+1, 3+1, none) for the test set:

  • Not applicable. This is not a study requiring adjudication of diagnostic outputs by multiple readers.

5. If a Multi-Reader Multi-Case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

  • No. This is not an AI-assisted diagnostic device. The workflow change is about using alternative non-fluoroscopic imaging modalities (e.g., intracardiac echocardiography, electro-anatomical mapping systems), not about AI improving human reader performance.

6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

  • No. This is not an AI algorithm. The predicate devices are physical catheters.

7. The type of ground truth used:

  • The "ground truth" is inferred from clinical outcomes and established clinical practice using the devices with alternative visualization methods in real-world scenarios. It's not a specific, adjudicated dataset for an AI algorithm. The performance of the devices (such as successful navigation, visualization, and mapping) under the "zero/low fluoroscopy" workflow is assumed to be equivalent to their performance under full fluoroscopy, as demonstrated by prior clinical use where such methods were employed.

8. The sample size for the training set:

  • Not applicable. There is no AI model being trained discussed in this document.

9. How the ground truth for the training set was established:

  • Not applicable. No training set for an AI model.

In summary:

This 510(k) is for a workflow modification for existing medical devices (catheters), not for an AI/ML diagnostic or assistive software. Therefore, the detailed data performance evaluation typically required for AI models against specific acceptance criteria (as requested in your template) is not presented or relevant in this clearance letter. The "proof" relies on the concept of substantial equivalence to previously cleared predicate devices, supported by a summary of existing clinical data that used alternative visualization methods, implying that the devices function safely and effectively even with reduced fluoroscopy.

§ 870.1200 Diagnostic intravascular catheter.

(a)
Identification. An intravascular diagnostic catheter is a device used to record intracardiac pressures, to sample blood, and to introduce substances into the heart and vessels. Included in this generic device are right-heart catheters, left-heart catheters, and angiographic catheters, among others.(b)
Classification. Class II (performance standards).