K Number
K232404
Date Cleared
2024-08-09

(365 days)

Product Code
Regulation Number
862.1175
Panel
CH
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

CHOLESTEROL: Reagent kit intended for the quantitative determination of Cholesterol in human serum. Cholesterol measurements are used in the diagnosis and treatment of disorders involving excess cholesterol in the blood, of lipid and lipoprotein metabolism disorders.

HDL-Cholesterol: Reagent kit intended for the quantitative determination of high-density lipoprotein in human serum. Measurements are used in the diagnosis and treatment of lipid disorders mellitus), atherosclerosis, and various liver and renal diseases.

LDL-Cholesterol: Reagent kit intended for the quantitative determination of low-density lipoprotein in human serum. Lipoprotein measurements are used in the diagnosis and treatment of lipid disorders (such as diabetes mellitus), atherosclerosis, and various liver and renal diseases.

TRIGLYCERIDES: Reagent kit intended for the quantitative determination of triglycerides (neutral fat) in human serum. Measurements are used in the diagnosis and treatment of patients with diabetes mellitus, nephrosis, liver obstruction, other diseases involving lipid metabolism, or various endocrine disorders.

Device Description

CHOLESTEROL: The Cholesterol Oxidase peroxidase (CHOD-PAP) enzymatic method is used. The cholesterol esterase enzyme catalyzes the hydrolysis of cholesterol and free fatty and free fatty acids. Free cholesterol, including that originally present in the sample, is then oxidized by the enzyme cholesterol oxidase (CHOD) to cholest-4-en-3-one, by using molecular oxygen as the electron acceptor and concurrently producing hydrogen peroxide (H2O2). The H2O2 produced is then used in a subsequent chromogenic oxidative coupling reaction, catalyzed by the enzyme peroxidase, in the presence of a redox indicator system, which leads to the formation of a colored compound, absorbing light at 550 nm. The increase in absorbance is directly proportional to the cholesterol concentration in the sample.

HDL-Cholesterol: The Accelerator Selective Detergent method is applied. The determination of HDL-Cholesterol is based on the following reactions: LDL, VLDL, and chylomicrons are neutralized by the combined action of the enzymes Cholesterol Oxidase, Peroxidase, accelerators and N,N-bis-(4-sulfobutyl)-m-toluidine-disodium (DSBmT). HDL remaining in the sample is disrupted by the action of a selective detergent and cholesterol is converted to △4 Cholestenone by the enzymatic action of Cholesterol Esterase and Cholesterol Oxidase, with the subsequent production of H2O2, which reacts with DSBmT and 4-aminoantipyrine in the presence of Peroxidase to a colored complex that absorbs light at 590 nm. The absorbance measured is proportional to the concentration of HDL-Cholesterol in the sample.

LDL-Cholesterol: The Selective Detergent method is applied. The method is in a two-reagent format and depends on the properties of a unique detergent. The first detergent solubilizes only the non-LDL lipoprotein particles. The cholesterol released is consumed by cholesterol esterase and cholesterol oxidase in a non-color forming reaction. The second detergent solubilizes the remaining LDL particles, and a chromogenic coupler allows for color formation. The enzyme reaction with LDL-Cholesterol in the presence of the coupler at 590 nm produces color that is proportional to the amount of LDL cholesterol present in the sample.

TRIGLYCERIDES: The enzymatic glycerol-3-phosphate-peroxidase (GPO-POD) method is used. The method enzymatically hydrolyzes by lipase to free fatty acids and glycerol is phosphorylated by adenosine triphosphate (ATP) with glycerokinase (GK) to produce glycerol-3-phosphate and adenosine diphosphate (ADP). Glycerol-3-phosphate-oxidase oxidizes glycerol-3-phosphate to dihydroxyacetone phosphate and H2O2. The catalytic action of peroxidase (POD) forms quinoneimine from H202, aminoantipyrine, and Dihydrate (N-Ethyl-N-(2hydroxy-3-sulfopropyl)-m-toluidine (TOOS). The absorption change at 550 nm is proportional to the triglycerides concentration in the sample.

AI/ML Overview

Here's a breakdown of the acceptance criteria and the study information for the Medicon Hellas Cholesterol, HDL-Cholesterol, LDL-Cholesterol, and Triglycerides test systems, based on the provided document:

1. Table of Acceptance Criteria and Reported Device Performance

The acceptance criteria are generally established by comparison to legally marketed predicate devices and alignment with clinical laboratory guidelines (CLSI). The document presents a clear comparison in the "Device Comparison Table" sections. For this summary, I'll focus on the key performance indicators for each analyte.

CHOLESTEROL

Acceptance Criteria (Predicate: OLYMPUS CHOLESTEROL REAGENT (K925603))Reported Device Performance (Medicon Hellas CHOLESTEROL)
Method comparison (correlation to comparator): 1.000Method comparison (correlation to comparator): 0.9980
Reportable range: 20 to 700 mg/dLReportable range: 20 to 700 mg/dL
Sensitivity LoD: 1 mg/dL (Predicate LoQ not defined)Sensitivity LoD / LoQ: LoD 4.4 / LoQ 4.6 (mg/dL)
Precision (within run & total for all LVs):

§ 862.1175 Cholesterol (total) test system.

(a)
Identification. A cholesterol (total) test system is a device intended to measure cholesterol in plasma and serum. Cholesterol measurements are used in the diagnosis and treatment of disorders involving excess cholesterol in the blood and lipid and lipoprotein metabolism disorders.(b)
Classification. Class I (general controls). The device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter subject to § 862.9.