(344 days)
The Cholestech LDX™ System is a small, portable analyzer and test cassette system is for in vitro diagnostic use only and should not be used for testing in children under the age of 2 years. The Cholestech LDX™ System is comprised of the Cholestech LDX Analyzer and the following cassettes:
The Lipid Profile GLU cassette is for the quantitative determination of total cholesterol, HDL (high-density Ilpoprotein) cholesterol, triglycerides and glucose in whole blood. The TC/HDL (total cholesterol) ratio and estimated values for LDL (low-density lipoprotein) and non-HDL cholesterol are also reported.
The TC+HDL GLU cassette is for the quantitative determination of total cholesterol, HDL (high-density lipoprotein) cholesterol, and glucose in whole blood.
The TC GLU cassette is for the quantitative determination of total cholesterol and glucose in whole blood.
The Lipid Profile cassette is for the quantitative determination of total cholesterol. HDL (high-density lipoprotein) cholesterol, and triglycerides in whole blood. The TC/HDL (total cholesterol) ratio and estimated values for LDL (low-density lipoprotein) and non-HDL cholesterol are also reported.
The TC+HDL cassette is for the quantitative determination of total cholesterol and HDL (high-density lipoprotein) cholesterol in whole blood.
The TC cassette is for the quantitative determination of total cholesterol in whole blood.
· Cholesterol measurements are used in the diagnosis and treatment of disorders involving excess cholesterol in the blood and lipid and lipoprotein metabolism disorders.
· HDL (lipoprotein) measurements are used in the diagnosis and treatment of lipid disorders (such as diabetes mellitus), atherosclerosis, and various liver and renal diseases.
· Triglyceride measurements are used in the diagnosis and treatment with diabetes mellitus, nephrosis, liver obstruction, other diseases involving lipid metabolism, or various endocrine disorders.
· Glucose measurements are used in the diagnosis and treatment of carbohydrate metabolism disorders including diabetes mellitus, idiopathic hypoglycemia, and of pancreatic islet cell carcinoma.
The Cholestech LDX ™ system combines enzymatic methodology and solid-phase technology to measure total cholesterol, HDL cholesterol, triglycerides and glucose. Samples used for testing can be whole blood from a fingerstick (collected in a lithium heparin-coated capillary tube) or venipuncture. The sample is applied to the Cholestech LDX™ cassette®.
The cassette is then placed into the Cholestech LDX™ Analyzer where a unique system on the cassette separates the plasma from the blood cells. A portion of the plasma flows to the right side of the cassette and is transferred to both the total cholesterol and triglyceride reaction pads. Simultaneously, plasma flows to the left side of the cassette where the low- and very low-density lipoproteins (LDL and VLDL) are precipitated with dextran sulfate (50,000 MW) and magnesium acetate precipitating reagent.The filtrate, containing both glucose and HDL cholesterol, is transferred to both the glucose and HDL cholesterol reaction pads.
The Cholestech LDX ™ Analyzer measures total cholesterol and HDL cholesterol by an enzymatic method based on the method formulation of Allain et al, and Roeschlau. Cholesterol esterase hydrolyzes the cholesterol esters in the filtrate or plasma to free cholesterol and the corresponding fatty acid. Cholesterol oxidase, in the presence of oxygen, oxidizes free cholesterol to cholest-4-ene-3-one and hydrogen peroxide. In a reaction catalyzed by horseradish peroxidase, the peroxide reacts with 4-Aminoantipyrine and N-ethyl-N-sulfohydroxypropyl-m-toluidine, sodium sale (TOOS) to form a purple-colored quinoneimine dye proportional to the total cholesterol and HDL cholesterol concentrations of the sample.
The analyzer measures triglycerides by an enzymatic method based on the hydrolysis of triglycerides by lipase to glycerol and free fatty acids. Glycerol, in a reaction catalyzed by glycerol kinase, is converted to glycerol-3-phosphate. In a third reaction, glycerol-3phosphate is oxidized by glycerol phosphate oxidase to dihydroxyacetone phosphate and hydrogen peroxide. The color reaction utilizing horseradish peroxidase is the same as for the total cholesterol and HDL cholesterol. Estimated LDL cholesterol and non-HDL cholesterol and a TC/HDL ratio are calculated using the measured values for TC, HDL, and Triglycerides.
The analyzer measures glucose by an enzymatic method that uses glucose oxidase to catalyze the oxidation of glucose to gluconolactone and hydrogen peroxide. The color reaction utilizing horseradish peroxidase is the same as that for total cholesterol, HDL cholesterol and triglycerides. The resultant color in all the reactions is measured by reflectance photometry.
A brown (magnetic) stripe on each cassette contains the calibration information required for the Cholestech LDX ™ Analyzer to convert the reflectance reading (% R) to the total cholesterol, HDL cholesterol, triglycerides and glucose concentrations.
The provided text is a 510(k) summary for the Cholestech LDX™ System and primarily discusses device modifications and comparison to a predicate device. It certifies that verification studies were performed as required by risk analysis and all acceptance criteria were met. However, it does not provide the specific details of the acceptance criteria or the reported device performance for these studies. It also does not contain information about the sample size, data provenance, number of experts, adjudication methods, MRMC studies, standalone algorithm performance, or how ground truth was established for test and training sets.
Therefore, based solely on the provided text, I cannot fulfill most of the requested information regarding the study that proves the device meets the acceptance criteria. The document states that such studies were done and met acceptance criteria, but omits the specifics.
Here's what can be inferred or stated from the provided text, and what is missing:
Table of Acceptance Criteria and Reported Device Performance
Information Not Available in the Text: The document explicitly states, "Verification studies were performed as required by risk analysis and all acceptance criteria were met." However, it does not list the specific acceptance criteria (e.g., specific accuracy thresholds, precision ranges, etc.) or the detailed reported device performance (e.g., actual measured accuracy, precision values, etc.) from these studies. The modification pertains to updating the performance claim related to conjugated and unconjugated Bilirubin interference. While it mentions that less than 10% interference was seen at specified levels for various substances, this is a general statement from the predicate device's limitations, not a specific acceptance criterion for the current modification or the exact performance data achieved.
2. Sample Size Used for the Test Set and the Data Provenance
Information Not Available in the Text: The document states that "verification studies" were performed, but it does not specify the sample size (e.g., number of patients, number of samples) used for any test set or the provenance of the data (e.g., country of origin, retrospective or prospective nature of the data collection).
3. Number of Experts Used to Establish the Ground Truth for the Test Set and the Qualifications of Those Experts
Information Not Available in the Text: The document details changes to an in vitro diagnostic (IVD) device for measuring cholesterol, triglycerides, and glucose. For IVD devices, ground truth is typically established by reference laboratory methods, not by human experts interpreting images or clinical cases. Therefore, the concept of "experts" as in radiologists or pathologists establishing ground truth is not applicable here. Even if it were (e.g., for method comparison studies requiring expert clinical correlation), the document does not mention any role for experts in establishing ground truth.
4. Adjudication Method for the Test Set
Information Not Available in the Text: Since the ground truth for an IVD device is generally established using reference methods (as opposed to human interpretation needing adjudication), an adjudication method as typically used in AI studies of imaging (e.g., 2+1, 3+1) is not applicable or described in this document.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, If So, What Was the Effect Size of How Much Human Readers Improve with AI vs. Without AI Assistance
Information Not Applicable/Available in the Text: This is an in vitro diagnostic (IVD) device, not an AI-assisted diagnostic imaging device. Therefore, MRMC studies comparing human readers with and without AI assistance are not relevant to this type of device and are not mentioned in the documentation.
6. If a Standalone (i.e., Algorithm Only Without Human-in-the-Loop Performance) Was Done
Information Not Applicable/Available in the Text: The Cholestech LDX™ System is a chemical analyzer, not an AI algorithm. Its performance is inherent to the device's enzymatic and solid-phase technology. The concept of "standalone algorithm performance" without human-in-the-loop is not directly applicable in the same way it would be for a software-as-a-medical-device (SaMD) that processes and interprets data for human review. The document describes the device's direct measurement capabilities.
7. The Type of Ground Truth Used
Inferred from Text: For an in vitro diagnostic device measuring analytes (cholesterol, HDL, triglycerides, glucose), the ground truth is typically established by reference laboratory methods (e.g., highly accurate and precise methods run on core laboratory instruments). While the document does not explicitly state "reference laboratory comparison" for ground truth, the context of an IVD device submission, especially one measuring these specific analytes, strongly implies this method.
8. The Sample Size for the Training Set
Information Not Applicable/Available in the Text: This is a chemical analyzer, not a machine learning or AI-based device that requires a "training set" in the computational sense. The device's operation is based on established enzymatic and chemical reactions, not on data-driven learning. Therefore, there is no "training set" in the context of AI/ML.
9. How the Ground Truth for the Training Set Was Established
Information Not Applicable/Available in the Text: As noted above, there is no "training set" for this type of IVD device in the context of AI/ML. The device's calibration and performance are based on chemical principles and validation studies, not on learning from a training dataset.
§ 862.1345 Glucose test system.
(a)
Identification. A glucose test system is a device intended to measure glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis and treatment of carbohydrate metabolism disorders including diabetes mellitus, neonatal hypoglycemia, and idiopathic hypoglycemia, and of pancreatic islet cell carcinoma.(b)
Classification. Class II (special controls). The device, when it is solely intended for use as a drink to test glucose tolerance, is exempt from the premarket notification procedures in subpart E of part 807 of this chapter subject to the limitations in § 862.9.