(159 days)
The GORE® Molding and Occlusion Balloon Catheter is intended for temporary occlusion of large vessels or to assist in the expansion of selfexpanding endovascular prostheses (stent grafts).
The GORE® Molding and Occlusion Balloon Catheter is a sterile (EtO), single use, single-lobed polyurethane balloon catheter. The compliant polyurethane balloon is mounted on the leading end of a 3 lumen catheter shaft (two inflation lumens and one quidewire lumen). Termination of the leading end of the catheter is an atraumatic catheter leading tip for smooth transition from the quidewire to catheter transition. Radiopaque markers (approximately 40 mm apart) indicate the proximal and distal end of the balloon which aid in proper balloon placement under fluoroscopy. Both of the (2) inflation lumens are in communication with each end of the balloon to facilitate balloon catheter preparation, inflation and deflation. At the trailing end of the balloon catheter is a dual port (balloon inflation and quidewire) yarm. The inflation port of the y-arm is in communication with both of the balloon inflation lumens and is affixed with a luer lock and three way stopcock via an extension tube. The quidewire lumen of the v-arm allows introduction of a 0.035" (0.89 mm) diameter guidewire for over-the-wire access. The trailing end of the quidewire lumen is affixed with a flushing / guidewire port with luer lock used for flushing the guidewire lumen. The balloon catheter proximal y-arm is provided within a housing which contains markings of the balloon length and inflation range diameter. The balloon can be inflated to diameters of 10 mm to a maximum inflation diameter of 37 mm. The balloon catheter profile is 10 Fr introducer sheath compatible.
Here's an analysis of the provided text regarding the acceptance criteria and study for the GORE Molding and Occlusion Balloon Catheter:
1. Table of Acceptance Criteria and Reported Device Performance:
The document describes a series of "Design Verification Testing" activities as the performance data. While specific pass/fail criteria (e.g., a numerical range for "Inflation Time") are not explicitly listed in this summary, the document states that these tests "demonstrated the subject device performed as intended and was substantially equivalent to the predicate device." This implies that the device met internal specifications and expectations derived from the predicate device's performance.
Acceptance Criterion (Test Name) | Reported Device Performance |
---|---|
Device Profile / Sheath Compatibility | Performed as intended, substantially equivalent to predicate device. |
Guidewire Compatibility | Performed as intended, substantially equivalent to predicate device. |
Repeat Inflation / Deflation | Performed as intended, substantially equivalent to predicate device. |
Balloon & Marker Band Position & Length | Performed as intended, substantially equivalent to predicate device. |
Inflation Time | Performed as intended, substantially equivalent to predicate device. |
Catheter Effective Length | Performed as intended, substantially equivalent to predicate device. |
Deflation Time | Performed as intended, substantially equivalent to predicate device. |
Visual Inspection Mechanical Defects | Performed as intended, substantially equivalent to predicate device. |
Occlusion | Performed as intended, substantially equivalent to predicate device. |
Tip Durability | Performed as intended, substantially equivalent to predicate device. |
Balloon Inflation Diameter | Performed as intended, substantially equivalent to predicate device. |
Tensile Strength | Performed as intended, substantially equivalent to predicate device. |
Burst Volume | Performed as intended, substantially equivalent to predicate device. |
Shelf Life Testing | Performed as intended, substantially equivalent to predicate device. |
Leakage | Performed as intended, substantially equivalent to predicate device. |
Packaging Validation Testing | Performed as intended, substantially equivalent to predicate device. |
Aspiration | Performed as intended, substantially equivalent to predicate device. |
Sterilization Validation Testing | Performed as intended, substantially equivalent to predicate device. |
Accessory Compatibility | Performed as intended, substantially equivalent to predicate device. |
Biocompatibility | Performed as intended, substantially equivalent to predicate device. |
2. Sample Size Used for the Test Set and Data Provenance:
The document does not specify the exact sample sizes for each of the "Design Verification Testing" activities. It only references "bench study" data.
- Sample Size: Not specified.
- Data Provenance: The studies were "bench studies," which are laboratory-based tests. The country of origin is not explicitly stated, but the company (W.L. Gore & Associates) is based in the U.S. (Flagstaff, Arizona), suggesting the studies were likely conducted in the U.S. These are retrospective tests performed to verify design specifications.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts:
Not applicable. This device is a physical medical device, and the "ground truth" for its performance is established through objective engineering and materials testing, not through expert human interpretation of data like in an AI/imaging device.
4. Adjudication Method for the Test Set:
Not applicable, as the tests are objective bench tests.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, If So, What Was the Effect Size of How Much Human Readers Improve with AI vs Without AI Assistance:
Not applicable. This is a physical medical device, not an AI or imaging diagnostic tool that would involve human readers.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done:
Not applicable. This is a physical medical device.
7. The Type of Ground Truth Used:
The ground truth used for this device's performance evaluation is based on objective engineering specifications, material properties, and functional requirements for a balloon catheter intended for occlusion and stent graft expansion. These are derived from established medical device standards and comparison to a predicate device. For example, "Burst Volume" would have a defined expected value, and the tested device's performance would be compared against that.
8. The Sample Size for the Training Set:
Not applicable. There is no concept of a "training set" for physical medical device bench testing in the same way there would be for an AI algorithm. The design and manufacturing processes are refined based on general engineering principles and iterative development, not a specific training dataset.
9. How the Ground Truth for the Training Set Was Established:
Not applicable, as there is no training set in the context of this device. The "ground truth" for the device's design and manufacturing is derived from industry standards, regulatory requirements, scientific principles, and iterative design and testing.
§ 870.4450 Vascular clamp.
(a)
Identification. A vascular clamp is a surgical instrument used to occlude a blood vessel temporarily.(b)
Classification. Class II (performance standards).