(84 days)
The Materialise Glenoid Positioning System is intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Glenoid Positioning System can be used in conjunction with Stryker's ReUnion RSA Reverse Shoulder System (K130895) and its respective components, with DJO's AltiVate Anatomic Shoulder (K162024), Encore Shoulder System (K051075), Turon™ to RSP Conversion Shell (K111629), Turon™ Shoulder System (K080402) and Reverse® Shoulder prosthesis (K092873) and their respective components, and Lima's SMR Shoulder System (K100858), SMR Reverse Shoulder System (K110598), SMR Modular Glenoid (K113254), SMR 3-Pegs Glenoid (K130642), SMR TT Metal Back Glenoid (K133349), SMR 40mm Glenosphere (K142139) and SMR Modular Glenoid (K143256) and their respective components and Depuy Synthes' GLOBAL® APG+ Shoulder System (K052472), the DELTA XTEND™ Reverse Shoulder System (K120174, K062250) and the GLOBAL® STEPTECH® APG Shoulder System (K092122) and their respective components.
The Materialise Glenoid Positioning System guide is single use only.
Materialise Glenoid Positioning Guides are patient-specific medical devices that are designed to assist the surgeon in the placement of glenoid components.
This can be done by generating a pre-surgical plan or by generating a pre-surgical plan and manufacturing patientspecific guides to transfer the plan to surgery. The device is a system composed of the following:
- a software component, branded as SurgiCase Planner. This software is a planning tool used to generate a pre-surgical plan for a specific patient.
- a hardware component, branded as the Materialise Glenoid Positioning System™ guide, which is a patient specific guide that is based on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patient-specific guides will be manufactured if the surgeon requests patient-specific guides to transfer the plan to surgery. The guide is designed and manufactured to fit the anatomy of a specific patient.
The Materialise Glenoid Positioning Guides must only be used within the intended use of the compatible components.
The provided text describes the 510(k) premarket notification for the Materialise Glenoid Positioning System. It claims substantial equivalence to a predicate device (K153602) and mentions performance data from previous testing. However, it does not contain the detailed acceptance criteria or the study that directly proves the device meets specific acceptance criteria in terms of quantitative performance metrics.
The text states: "Previous testing for biocompatibility, cleaning, debris, dimensional stability and packaging are applicable to the subject device and demonstrate squivalence with the predicate device. Testing verified that the accuracy and performance of the system is adequate to perform as intended. The stability of the device placement, surgical technique, intended use and functional elements of the same as that of the predicate Materialise Glenoid Positioning System (K153602), and therefore previous cadaver testing on predicate device K153602 and previously cleared device K131559 (which is the predicate for K153602) is considered applicable to the subject device."
This indicates that some performance evaluation was done for the predicate devices, and that information is being leveraged for the current submission. However, the specific acceptance criteria (e.g., maximum allowable deviation, accuracy thresholds) and the results of a study against those criteria for the current device are not presented in this document.
Therefore, I cannot provide a complete answer to your request based solely on the provided text. I will, however, outline what information is available and explicitly state what is missing.
1. A table of acceptance criteria and the reported device performance
This information is not explicitly provided in the document. The text states: "Testing verified that the accuracy and performance of the system is adequate to perform as intended." This is a qualitative statement, not a quantitative table of acceptance criteria and performance against those criteria.
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
The document mentions "previous cadaver testing on predicate device K153602 and previously cleared device K131559".
- Sample size: Not specified.
- Data provenance: Cadaver testing. Country of origin not specified.
- Retrospective/Prospective: Not specified, but cadaver testing is typically prospective for the purpose of the study.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This information is not provided in the document.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not provided in the document.
5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
- MRMC study: Not mentioned. The device is a surgical instrument/guide, not typically an AI-driven image interpretation system that would involve "human readers" in the sense of diagnostic interpretation. It assists surgeons in positioning glenoid components based on preoperative planning.
- Effect size: Not applicable given the nature of the device and the lack of an MRMC study.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
The device is a "patient specific guide that is based on a pre-surgical plan" and a "software component, branded as SurgiCase Planner. This software is a planning tool used to generate a pre-surgical plan for a specific patient." The "Materialise Glenoid Positioning System guides are patient specific templates which transfer the pre-operatively determined pin positioning to the patient intraoperatively, assisting the surgeon."
This indicates a human-in-the-loop process where a qualified surgeon inspects, fine-tunes, and approves the pre-surgical plan generated by the software. Therefore, a purely standalone algorithm-only performance as an output without human involvement is not the intended use model described. However, the accuracy of the output of the software (the surgical plan and subsequent guide design) would have been validated, which is essentially a standalone performance evaluation of the software component's mathematical and geometrical accuracy. The details of this validation are not in the document.
7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)
Given the "cadaver testing" and the nature of the device (positioning guide), the ground truth for measuring accuracy would likely be physical measurements against an intended planned position or anatomical landmark, potentially established by expert surgeons or precise measurement tools. However, the specific method of establishing this ground truth is not detailed in the document.
8. The sample size for the training set
The document describes premarket notification for a medical device that includes "a software component" for planning and "a hardware component" (patient-specific guide). It mentions "previous cadaver testing" which sounds more like a validation/testing stage rather than training for a machine learning model. If the software component involves machine learning or AI, the training set details are not provided. The text focuses on the device being "substantially equivalent" to a predicate, implying that much of the foundational validation comes from the predicate's testing.
9. How the ground truth for the training set was established
As described in point 8, a "training set" in the context of machine learning is not explicitly mentioned, and thus how its ground truth was established is not provided. If the software uses algorithms that are not machine learning-based, then the concept of a training set as typically defined for AI may not apply. The emphasis is on the software generating a "pre-surgical plan" and its accuracy.
{0}------------------------------------------------
Image /page/0/Picture/2 description: The image shows the logo for the U.S. Department of Health & Human Services. The logo consists of a circular seal with the text "DEPARTMENT OF HEALTH & HUMAN SERVICES - USA" around the perimeter. Inside the circle is an abstract symbol of three human profiles facing to the right, stacked on top of each other.
Food and Drug Administration 10903 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002
June 19, 2017
Materialise NV Mr. Oliver Clemens Regulatory Officer Technologielaan 15. Leuven 3001 BELGIUM
Re: K170893
Trade/Device Name: Materialise Glenoid Positioning System Regulation Number: 21 CFR 888.3660 Regulation Name: Shoulder joint metal/polymer semi-constrained cemented prosthesis Regulatory Class: Class II Product Code: KWS Dated: March 21, 2017 Received: March 27, 2017
Dear Mr. Clemens:
We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.
If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.
Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR
{1}------------------------------------------------
Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical devicerelated adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.
If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Division of Industry and Consumer Education at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address
http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to
http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.
You may obtain other general information on your responsibilities under the Act from the Division of Industry and Consumer Education at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address
http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.
Sincerely.
Mark N. Melkerson -S
Mark N. Melkerson Director Division of Orthopedic Devices Office of Device Evaluation Center for Devices and Radiological Health
Enclosure
{2}------------------------------------------------
DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration
Indications for Use
510(k) Number (if known)
Device Name
Materialise Glenoid Positioning System
The Materialise Glenoid Positioning System is intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Glenoid Positioning System can be used in conjunction with Stryker's ReUnion RSA Reverse Shoulder System (K130895) and its respective components, with DJO's AltiVate Anatomic Shoulder (K162024). Encore Shoulder System (K051075), Turon™ to RSP Conversion Shell (K111629), Turon™ Shoulder System (K080402) and Reverse® Shoulder prosthesis (K092873) and their respective components, and Lima's SMR Shoulder System (K100858), SMR Reverse Shoulder System (K110598), SMR Modular Glenoid (K113254), SMR 3-Pegs Glenoid (K130642), SMR TT Metal Back Glenoid (K133349), SMR 40mm Glenosphere (K142139) and SMR Modular Glenoid (K143256) and their respective components and Depuy Synthes' GLOBAL® APG+ Shoulder System (K052472), the DELTA XTEND™ Reverse Shoulder System (K120174, K062250) and the GLOBAL® STEPTECH® APG Shoulder System (K092122) and their respective components.
The Materialise Glenoid Positioning System guide is single use only.
| Type of Use (Select one or both, as applicable) | |
|---|---|
| ☑ Prescription Use (Part 21 CFR 801 Subpart D) | □ Over-The-Counter Use (21 CFR 801 Subpart C) |
CONTINUE ON A SEPARATE PAGE IF NEEDED.
This section applies only to requirements of the Paperwork Reduction Act of 1995.
DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.
The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:
Department of Health and Human Services Food and Druq Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov
"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."
Form Approved: OMB No. 0910-0120
Expiration Date: January 31, 2017
See PRA Statement below.
{3}------------------------------------------------
510(k) Summary
The following section is included as required by the Safe Medical Devices Act (SMDA) of 1990 and 21CFR 807.92
| Company name | Materialise N.V. |
|---|---|
| Establishment registration number | 3003998208 |
| Street Address | Technologielaan 15 |
| City | Leuven |
| Postal code | 3001 |
| Country | Belgium |
| Phone number | +32 16 39 62 80 |
| Fax number | +32 16 39 66 06 |
| Principal Contact person | Oliver Clemens |
| Contact title | Regulatory Officer |
| Contact e-mail address | Regulatory.Affairs@materialise.be |
| Additional contact person | Filip Jonkergouw |
| Contact title | Product Manager |
| Contact e-mail address | Filip.Jonkergouw@materialise.be |
Submission date
The date of the Traditional 510(k) submission is March 21, 2017
Submission information
| Trade Name | Materialise Glenoid Positioning System |
|---|---|
| Common Name | Patient specific instrumentation for shoulder arthroplasty + 3Dplanning software |
| Classification Name | Prosthesis, Shoulder, Semi-Constrained, Metal/PolymerCemented |
| Primary product code | KWS (21 CFR 888.3660) |
Predicate Device
The predicate device to which substantial equivalence is claimed:
{4}------------------------------------------------
| Trade or proprietary or model name | Materialise Glenoid Positioning SystemMaterialise Glenoid Positioning System guideSurgiCase Planner |
|---|---|
| 510(k) number | K153602 |
| Decision date | April 26, 2016 |
| Classification product code | KWS (21 CFR 888.3660) |
| Manufacturer | Materialise N.V. |
Device Description
Materialise Glenoid Positioning Guides are patient-specific medical devices that are designed to assist the surgeon in the placement of glenoid components.
This can be done by generating a pre-surgical plan or by generating a pre-surgical plan and manufacturing patientspecific guides to transfer the plan to surgery. The device is a system composed of the following:
- a software component, branded as SurgiCase Planner. This software is a planning tool used to generate a pre-surgical plan for a specific patient.
- a hardware component, branded as the Materialise Glenoid Positioning System™ guide, which is a patient specific guide that is based on a pre-surgical plan. This pre-surgical plan is generated using the software component. Patient-specific guides will be manufactured if the surgeon requests patient-specific guides to transfer the plan to surgery. The guide is designed and manufactured to fit the anatomy of a specific patient.
The Materialise Glenoid Positioning Guides must only be used within the intended use of the compatible components.
Intended Use
The Materialise Glenoid Positioning System is intended to be used as a surgical instrument to assist in the intraoperative positioning of glenoid components used with total and reverse shoulder arthroplasty by referencing anatomic landmarks of the shoulder that are identifiable on preoperative CT-imaging scans.
The Materialise Glenoid Positioning System can be used in conjunction with Stryker's ReUnion RSA Reverse Shoulder System (K130895) and its respective components, with DJO's AltiVate Anatomic Shoulder (K162024), Encore Shoulder System (K051075), Turon™ to RSP Conversion Shell (K111629), Turon™ Shoulder System (K080402) and Reverse® Shoulder prosthesis (K092873) and their respective components, and Lima's SMR Shoulder System (K100858), SMR Reverse Shoulder System (K110598), SMR Modular Glenoid
{5}------------------------------------------------
Materialise Glenoid Positioning System 510(k) Premarket Notification
510(k) Summary
(K113254), SMR 3-Pegs Glenoid (K130642), SMR TT Metal Back Glenoid (K133349), SMR 40mm Glenosphere (K142139) and SMR Modular Glenoid (K143256) and their respective components and Depuy Synthes' GLOBAL® APG+ Shoulder System (K052472), the DELTA XTEND™ Reverse Shoulder System (K120174, K062250) and the GLOBAL® STEPTECH® APG Shoulder System (K092122) and their respective components.
The Materialise Glenoid Positioning System guide is single use only.
Functioning of the Device
The Materialise Glenoid Positioning System generates a pre-surgical imaging data using the SurgiCase Planner. The software device then is used pre-operatively by a qualified surgeon to inspect, fine-tune and approve the pre-surgical plan. If requested by the surgeon, Materialise Glenoid Positioning System guides are designed and manufactured based on the approved pre-surgical plan. Materialise Glenoid Positioning System guides are patient specific templates which transfer the pre-operatively determined pin positioning to the patient intraoperatively, assisting the surgeon in positioning glenoid components used with total and reverse shoulder arthroplasty procedures.
Technological Characteristics
A detailed comparison shows the subject device is substantially equivalent in intended use, design, functionality, operating principles, materials and performance characteristics to the predicate device, however extends the compatible implant families to DJO implants cleared under K162024 and Depuy Synthes' implants cleared under K052472, K120174, K062250 and K092122.
Performance Data
Previous testing for biocompatibility, cleaning, debris, dimensional stability and packaging are applicable to the subject device and demonstrate squivalence with the predicate device. Testing verified that the accuracy and performance of the system is adequate to perform as intended. The stability of the device placement, surgical technique, intended use and functional elements of the same as that of the predicate Materialise Glenoid Positioning System (K153602), and therefore previous cadaver testing on predicate device K153602 and previously cleared device K131559 (which is the predicate for K153602) is considered applicable to the subject device.
Summary
The characteristics that determine the functionality and performance of the subject device are substantially equivalent to the predicate device cleared under K153602. The non-clinicates that the subject device is as safe, as effective, and performs as well as the predicates. The Materialise Glenoid Positioning System will be manufactured in compliance with FDA (CFR 820 & Part 11) and ISO quality system (9000 and 13485) requirements.
§ 888.3660 Shoulder joint metal/polymer semi-constrained cemented prosthesis.
(a)
Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across-the-joint. This generic type of device includes prostheses that have a humeral resurfacing component made of alloys, such as cobalt-chromium-molybdenum, and a glenoid resurfacing component made of ultra-high molecular weight polyethylene, and is limited to those prostheses intended for use with bone cement (§ 888.3027).(b)
Classification. Class II. The special controls for this device are:(1) FDA's:
(i) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical Devices—Part I: Evaluation and Testing,’ ”
(ii) “510(k) Sterility Review Guidance of 2/12/90 (K90-1),”
(iii) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone Cement,”
(iv) “Guidance Document for the Preparation of Premarket Notification (510(k)) Application for Orthopedic Devices,” and
(v) “Guidance Document for Testing Non-articulating, ‘Mechanically Locked’ Modular Implant Components,”
(2) International Organization for Standardization's (ISO):
(i) ISO 5832-3:1996 “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-aluminum 4-vandium Alloy,”
(ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-chromium-molybdenum casting alloy,”
(iii) ISO 5832-12:1996 “Implants for Surgery—Metallic Materials—Part 12: Wrought Cobalt-chromium-molybdenum alloy,”
(iv) ISO 5833:1992 “Implants for Surgery—Acrylic Resin Cements,”
(v) ISO 5834-2:1998 “Implants for Surgery—Ultra-high Molecular Weight Polyethylene—Part 2: Moulded Forms,”
(vi) ISO 6018:1987 “Orthopaedic Implants—General Requirements for Marking, Packaging, and Labeling,” and
(vii) ISO 9001:1994 “Quality Systems—Model for Quality Assurance in Design/Development, Production, Installation, and Servicing,” and
(3) American Society for Testing and Materials':
(i) F 75-92 “Specification for Cast Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implant Material,”
(ii) F 648-98 “Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants,”
(iii) F 799-96 “Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Forgings for Surgical Implants,”
(iv) F 1044-95 “Test Method for Shear Testing of Porous Metal Coatings,”
(v) F 1108-97 “Specification for Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,”
(vi) F 1147-95 “Test Method for Tension Testing of Porous Metal,”
(vii) F 1378-97 “Standard Specification for Shoulder Prosthesis,” and
(viii) F 1537-94 “Specification for Wrought Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implants.”