(52 days)
The Synthes USS are non-cervical spinal fixation devices intended for posterior pedicle screw fixation (TI-S2/ilium), posterior hook fixation (TI-L5), or anterolateral fixation (T8-L5). Pedicle screw fixation is limited to skeletally mature patients with the exception of the Small Stature USS, which includes small stature and pediatric patients. These devices are indicated as an adjunct to fusion for all of the following indications: degenerative disc disease (defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies), spondylolisthesis, trauma (i.e., fracture or dislocation), deformities or curvatures (i.e., scoliosis, kyphosis, and/or lordosis, Scheuermann's Disease), tumor, stenosis, and failed previous fusion (pseudoarthrosis).
When treating patients with Degenerative Disc Disease (DDD), transverse bars are not cleared for use as part of the posterior pedicle screw construct.
When used with the 3.5 mm/6.0mm parallel connectors, the Synthes USS 6.0 mm rod systems can be linked to the CerviFix 3.5mm Systems. In addition, when used with 3.5 mm/5.0mm parallel connectors, the Synthes Small Stature USS can be linked to the CerviFix 3.5mm Systems. When used with the 5.0 mm/6.0mm parallel connectors, the Synthes Small Stature USS can be linked to the Synthes USS 6.0 mm rod systems. When used with the 5.5 mm/6.0mm parallel or extension connectors, Synthes USS 5.5 mm rod systems can be linked to the Synthes USS 6.0 mm rod systems. 5.5 mm/5.5mm parallel or extension connectors can be used to link all Synthes USS 5.5 mm rod systems to one another. 6.0 mm/6.0mm parallel or extension connectors can be used to link all Synthes USS 6.0 mm rod systems to one another.
When used with the 3.5 mm/6.0mm and 4.0 mm/6.0mm tapered rods, the Synthes USS 6.0 mm rod systems can be linked to the CerviFix 3.5 mm and 4.0 mm Systems, respectively. When used with the 3.5 mm/5.5mm and 4.0 mm/5.5 mm tapered rods, Synthes USS 5.5 mm rod systems can be linked to the CerviFix 3.5 mm and 4.0 mm Systems, respectively. When used with the 5.5 mm/6.0mm tapered rods, the Synthes USS 6.0 mm rod systems can be linked to Synthes USS 5.5 mm rod systems.
In addition, Synthes USS 6.0 mm rod systems can be interchanged with all USS 6.0 mm rods and transconnectors except Synthes 6.0 mm cobalt-chromium-molybdenum alloy and titanium grade 3 rods, which can only be used with Pangea. Synthes USS 5.5 mm rod systems can be interchanged with all USS 5.5 mm rods and transconnectors.
Synthes USS
6.0 mm Rod Systems: USS Side-Opening, USS Dual-Opening, USS VAS variable axis components, USS Fracture, Click'X, Click'X Monoaxial, Pangea, Pangea Monoaxial, USS Polyaxial, USS Iliosacral, ClampFix
5.5 mm Rod System: Matrix, MIRS
5.0 mm Rod System: USS Small Stature
CerviFix
3.5 mm Rod Systems: CerviFix, Axon, Synapse
4.0 mm Rod System: Synapse
This is an addition to Synthes' existing non-cervical spinal fixation devices intended for posterior pedicle screw fixation (TI-S2/ilium). posterior pedicle screw fixation (T1-S2/ilium), posterior hook fixation (T1-L5), or anterolateral fixation (T8-L5). The current system is comprised of monoaxial and polyaxial screws, rods, locking caps, transverse bars and connectors. The new sagittal screw that is the subject of this submission is similar to the already-cleared polyaxial screw and is manufactured of TAN (Titanium-6 Aluminum-7 Niobium Alloy per ASTM F1295 - 05 ). These screws restrict head angulation to the direction parallel to the rod slot (typically the cranial/caudal direction).
The provided text describes a 510(k) summary for the Synthes Matrix System, a medical device for spinal fixation, and its substantial equivalence to predicate devices, rather than a study proving the device meets specific performance criteria.
Therefore, many of the requested categories for AI/algorithm performance and study design are not applicable as this document pertains to a medical device submission, not an AI or software study.
However, I can extract the relevant information regarding performance data and acceptance criteria based on the provided text.
Here's a breakdown of the requested information based on the provided 510(k) summary:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not explicitly state "acceptance criteria" as numerical thresholds for specific performance metrics in the context of an AI study. Instead, it refers to the device demonstrating "equivalently or superiorly" to predicate devices.
Acceptance Criteria Category | Acceptance Criteria (Implicit) | Reported Device Performance |
---|---|---|
Mechanical Performance | Equivalent or superior to predicate devices (as per ASTM F1717-11a) | Performs equivalently or superiorly to predicate devices in static compression bending, static torsion, and dynamic compression bending. |
2. Sample size used for the test set and the data provenance
Not Applicable (N/A) - This document describes non-clinical bench testing for a physical medical device (spinal fixation system), not a study with a test set of data (images, clinical records, etc.) for an AI algorithm. The performance data is from mechanical bench testing, not a clinical data set.
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts
N/A - Ground truth as defined for an AI study (e.g., expert consensus on image interpretation) is not applicable here. The "ground truth" for mechanical testing would be the physical properties and performance metrics measured using established engineering standards.
4. Adjudication method for the test set
N/A - This concept is relevant for studies involving human judgment or interpretation (like image reading). For mechanical bench testing, data is typically collected directly from instruments and analyzed against engineering standards.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
N/A - This is an AI-specific study type. The document describes a physical medical device and its mechanical testing.
6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done
N/A - This refers to AI algorithm performance. The Synthes Matrix System is a physical implantable device.
7. The type of ground truth used
For the non-clinical performance data, the "ground truth" (or reference standard) inherently comes from established engineering standards and physical measurements obtained during mechanical bench testing. Specifically, it adheres to ASTM F1717-11a, an American Society for Testing and Materials standard for spinal implant constructs.
8. The sample size for the training set
N/A - This document does not describe the development or testing of an AI algorithm, and therefore there is no "training set."
9. How the ground truth for the training set was established
N/A - As there is no training set for an AI algorithm, this question is not applicable.
§ 888.3070 Thoracolumbosacral pedicle screw system.
(a)
Identification. (1) Rigid pedicle screw systems are comprised of multiple components, made from a variety of materials that allow the surgeon to build an implant system to fit the patient's anatomical and physiological requirements. Such a spinal implant assembly consists of a combination of screws, longitudinal members (e.g., plates, rods including dual diameter rods, plate/rod combinations), transverse or cross connectors, and interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors).(2) Semi-rigid systems are defined as systems that contain one or more of the following features (including but not limited to): Non-uniform longitudinal elements, or features that allow more motion or flexibility compared to rigid systems.
(b)
Classification. (1) Class II (special controls), when intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudarthrosis). These pedicle screw spinal systems must comply with the following special controls:(i) Compliance with material standards;
(ii) Compliance with mechanical testing standards;
(iii) Compliance with biocompatibility standards; and
(iv) Labeling that contains these two statements in addition to other appropriate labeling information:
“Warning: The safety and effectiveness of pedicle screw spinal systems have been established only for spinal conditions with significant mechanical instability or deformity requiring fusion with instrumentation. These conditions are significant mechanical instability or deformity of the thoracic, lumbar, and sacral spine secondary to severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra, degenerative spondylolisthesis with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal tumor, and failed previous fusion (pseudarthrosis). The safety and effectiveness of these devices for any other conditions are unknown.”
“Precaution: The implantation of pedicle screw spinal systems should be performed only by experienced spinal surgeons with specific training in the use of this pedicle screw spinal system because this is a technically demanding procedure presenting a risk of serious injury to the patient.”
(2) Class II (special controls), when a rigid pedicle screw system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion in the treatment of degenerative disc disease and spondylolisthesis other than either severe spondylolisthesis (grades 3 and 4) at L5-S1 or degenerative spondylolisthesis with objective evidence of neurologic impairment. These pedicle screw systems must comply with the following special controls:
(i) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(ii) Non-clinical performance testing must demonstrate the mechanical function and durability of the implant.
(iii) Device components must be demonstrated to be biocompatible.
(iv) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(v) Labeling must include the following:
(A) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(B) Intended use and indications for use, including levels of fixation;
(C) Identification of magnetic resonance (MR) compatibility status;
(D) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user; and
(E) Detailed instructions of each surgical step, including device removal.
(3) Class II (special controls), when a semi-rigid system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion for any indication. In addition to complying with the special controls in paragraphs (b)(2)(i) through (v) of this section, these pedicle screw systems must comply with the following special controls:
(i) Demonstration that clinical performance characteristics of the device support the intended use of the product, including assessment of fusion compared to a clinically acceptable fusion rate.
(ii) Semi-rigid systems marketed prior to the effective date of this reclassification must submit an amendment to their previously cleared premarket notification (510(k)) demonstrating compliance with the special controls in paragraphs (b)(2)(i) through (v) and paragraph (b)(3)(i) of this section.