K Number
K182837
Date Cleared
2019-01-22

(105 days)

Product Code
Regulation Number
888.3075
Reference & Predicate Devices
Predicate For
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The M.U.S.T. MINI Posterior Cervical Screw System is intended to provide immobilization of spinal segments as an adjunct to fusion, in skeletally mature patient, for the following acute and chronic instabilities of the cervical spine (C1 to C7) and the thoracic spine from T1-T3: traumatic spinal fraumatic dislocations; instability or deformity; failed previous (e.g., pseudarthrosis); tumors involving the cervical spine; degenerative disease, including intractable radior myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability.

The M.U.S.T. MINI Posterior Cervical Screw System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.

In order to achieve additional levels of fixation, the M.U.S.T. MINI Posterior Cervical Screw System may be connected to the M.U.S.T. System rods with the M.U.S.T. MINI rod connectors. Transition rods with differing diameters may also be used to connect the M.U.S.T. MINI Posterior Cervical Screw System to the M.U.S.T. System. Refer to the M.U.S.T. System package insert for a list of the M.U.S.T. Indications of Use.

When used with the Occipital Plate, the M.U.S.T MINI Posterior Cervical Screw System is also intended to provide immobilization and stabilization for the occipito-cervico-thoracic junction (occiput - T3) in treatment of the instabilities mentioned above, including occipitocervical dislocation.

Device Description

The subject M.U.S.T. MINI Extension implants are line extension to the previously cleared Medacta M.U.S.T. MINI Posterior Cervical Screws System (K171369).

The new subject Posterior Occipital-Cervical Screw System is a multi-component device, manufactured from Titanium-based and CoCr materials, consisting of occipital screws and straight and pre-bent rods that longitudinally connect the occiput with the posterior cervical spine. The system is intended to stabilize and fuse the spine in degenerative disc disease, spinal fusion, cervical fractures and in surgically repaired spinal pseudoarthrosis. In addition, it is used in deformity correction e.g. scoliosis to correct and stabilize the spine.

The M.U.S.T. MINI Extension implants have been designed with the same or similar shape, dimensions and materials as the previously cleared Medacta M.U.S.T. MINI Posterior Cervical Screws System (K171369), Synthes Synapse OCT System (K070573 and K142838), DePuy Mountaineer OCT Spinal System (K042508 and K110353) and Alphatec Solanas Avalon Posterior Fixation System (K111076).

The M.U.S.T. MINI Extension implants are manufactured with the same materials of the Medacta predicate device M.U.S.T. MINI Posterior Cervical Screws System (K171369): Ti-6Al-4V ELI (ISO 5832-3 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium allov + ASTM F136 Standard Specification for Wrought Titanium-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)) and CoCtMo (ISO 5832-12 Implants for surgery -- Metallic materials -- Part 12: Wrought cobalt-chromium-molybdenum alloy + ASTM F1537 Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)).

Additionally, the new 4x and 6x package for the already cleared (K171369) M.U.S.T. MINI set screw implant have been introduced.

AI/ML Overview

This document describes the M.U.S.T. MINI Extension, a spinal fixation system, and its substantial equivalence to predicate devices, rather than a diagnostic AI device. Therefore, the requested information about acceptance criteria, study details, expert involvement, and AI-specific performance metrics is not applicable in the context of this 510(k) submission.

The provided text does not contain information about an AI device or a study assessing its performance against acceptance criteria using a test set, ground truth, or human readers.

Instead, the document focuses on demonstrating that the M.U.S.T. MINI Extension is substantially equivalent to existing, legally marketed spinal fixation devices through a comparison of:

  • Intended use: The conditions for which the device is designed to be used.
  • Design and technological characteristics: Materials, dimensions, and overall structure.
  • Performance evaluations: Mechanical tests to ensure the device meets safety and efficacy standards for spinal implants.

Here's a breakdown of the relevant information provided in the document:

1. A table of acceptance criteria and the reported device performance:

The document mentions that "Testing was conducted according to written protocols with acceptance criteria that were based on standards." However, it does not provide a specific table of acceptance criteria and reported numerical performance results for the new device compared to those criteria. It lists the types of mechanical tests performed, which inherently have acceptance criteria defined by the cited ASTM standards, but the specific Pass/Fail outcomes or quantitative measurements are not detailed in this summary.

Examples of tests performed (implying acceptance criteria based on standards):

  • Static Compression Bending Test (ASTM F2706-08 (Reapproved 2014))
  • Static Torsion Test (ASTM F2706-08 (Reapproved 2014))
  • Dynamic Axial Compression Test (ASTM F2706-08 (Reapproved 2014))
  • Dynamic Torsion Test (ASTM F2706-08 (Reapproved 2014))
  • Axial Gripping Test (ASTM F1798-13)
  • Plate Torque to Failure Test
  • Screw Torque to Failure Test
  • Pyrogenicity (Bacterial Endotoxin Test (LAL test) according to European Pharmacopoeia §2.6.14/USP chapter <85>, and pyrogen test according to USP chapter <151>)

2. Sample size used for the test set and the data provenance:

  • Sample size: Not explicitly stated for each mechanical test. Mechanical tests typically use a specific number of samples of the device components.
  • Data provenance: Not applicable in the context of a clinical patient dataset. The "data" here refers to the results of mechanical testing on the device itself (implants, rods, screws). These tests are performed in a lab setting, not on patient data.

3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

  • This is not applicable as there is no "ground truth" related to expert assessment of AI output. The "truth" for this device's performance is determined by adherence to engineering standards and mechanical properties.
  • There was a "Design Validation Workshop" mentioned, which implies expert review during the design process, but not for establishing ground truth in a diagnostic context.

4. Adjudication method for the test set:

  • Not applicable, as there are no expert adjudications in the context of mechanical testing of a spinal implant.

5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

  • No, an MRMC study was not done. This type of study is relevant for diagnostic imaging AI, where human readers evaluate cases with and without AI assistance. This document is for a physical surgical implant.

6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done:

  • Not applicable. This device is a physical implant, not a standalone algorithm.

7. The type of ground truth used:

  • For the mechanical tests, the "ground truth" is defined by the objective physical and mechanical properties required by the cited ASTM standards. It's not expert consensus, pathology, or outcomes data in the typical sense of AI/diagnostic studies, but rather engineering specifications.

8. The sample size for the training set:

  • Not applicable. This is not an AI device that requires a training set.

9. How the ground truth for the training set was established:

  • Not applicable, as there is no training set for this device.

In summary: The provided document is a 510(k) summary for a physical medical device (spinal implant) and demonstrates its substantial equivalence primarily through comparisons with predicate devices and mechanical performance testing against established engineering standards. It does not involve AI, diagnostic performance, patient data, or expert interpretations in the way the requested questions imply.

{0}------------------------------------------------

Image /page/0/Picture/0 description: The image contains the logo of the U.S. Food and Drug Administration (FDA). On the left is the Department of Health & Human Services logo. To the right of that is the FDA logo, which consists of the letters "FDA" in a blue square, followed by the words "U.S. FOOD & DRUG ADMINISTRATION" in blue text.

January 22, 2019

Medacta International SA % Mr. Christopher Lussier Director, Quality and Regulatory Medacta USA 3973 Delp Street Memphis, Tennessee 38118

Re: K182837

Trade/Device Name: M.U.S.T. Mini Extension Regulatory Class: Unclassified Product Code: NKG, KWP Dated: December 17, 2018 Received: December 18, 2018

Dear Mr. Lussier:

We have reviewed vour Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food. Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you. however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see

{1}------------------------------------------------

https://www.fda.gov/CombinationProducts/GuidanceRegulatoryInformation/ucm597488.html; good manufacturing practice requirements as set forth in the quality systems (OS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products, and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm.

For comprehensive regulatory information about mediation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/) and CDRH Learn (http://www.fda.gov/Training/CDRHLearn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (http://www.fda.gov/DICE) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Ronald P. Jean -S

for Mark N. Melkerson Director Division of Orthopedic Devices Office of Device Evaluation Center for Devices and Radiological Health

Enclosure

{2}------------------------------------------------

Indications for Use

510(k) Number (if known) K182837

Device Name M.U.S.T. MINI Extension

Indications for Use (Describe)

The M.U.S.T. MINI Posterior Cervical Screw System is intended to provide immobilization of spinal segments as an adjunct to fusion, in skeletally mature patient, for the following acute and chronic instabilities of the cervical spine (C1 to C7) and the thoracic spine from T1-T3: traumatic spinal fraumatic dislocations; instability or deformity; failed previous (e.g., pseudarthrosis); tumors involving the cervical spine; degenerative disease, including intractable radior myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability.

The M.U.S.T. MINI Posterior Cervical Screw System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.

In order to achieve additional levels of fixation, the M.U.S.T. MINI Posterior Cervical Screw System may be connected to the M.U.S.T. System rods with the M.U.S.T. MINI rod connectors. Transition rods with differing diameters may also be used to connect the M.U.S.T. MINI Posterior Cervical Screw System to the M.U.S.T. System. Refer to the M.U.S.T. System package insert for a list of the M.U.S.T. Indications of Use.

When used with the Occipital Plate, the M.U.S.T MINI Posterior Cervical Screw System is also intended to provide immobilization and stabilization for the occipito-cervico-thoracic junction (occiput - T3) in treatment of the instabilities mentioned above, including occipitocervical dislocation.

Type of Use (Select one or both, as applicable)
Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."


{3}------------------------------------------------

2.0 510(k) Summary

I. Submitter

Medacta International SA Strada Regina 6874 Castel San Pietro (CH) Switzerland Phone (+41) 91 696 60 60 Fax (+41) 91 696 60 66

Contact Person: Stefano Baj, Regulatory Affairs Manager, Medacta International SA Date Prepared: October 5, 2018 Date Revised: December 14, 2018

II. Device

Device Proprietary Name:M.U.S.T. MINI Extension
Common or Usual Name:Spinal Interlaminal Fixation Orthosis
Classification Name:Appliance, Fixation, Spinal Interlaminal
Primary Product Code:NKG, KWP
Regulation Number:Unclassified, 21 CFR 888.3050
Device ClassificationUnclassified, II

III. Predicate Device

Substantial equivalence is claimed to the following devices:

Primary predicate device:

  • Mountaineer OCT Spinal System K110353, DePuy; .
    Additional predicate devices:

  • M.U.S.T. MINI Posterior Cervical Screws System K171369. Medacta International SA: ●

  • . Synapse Occipital-Cervical-Thoracic (OCT) System - K070573 and K142838, Synthes;

  • Mountaineer OCT Spinal System K042508, DePuy; and ●

  • . Solanas Avalon Posterior Fixation System - K111076, Alphatec.

Device Description IV.

The subject M.U.S.T. MINI Extension implants are line extension to the previously cleared Medacta M.U.S.T. MINI Posterior Cervical Screws System (K171369).

{4}------------------------------------------------

The new subject Posterior Occipital-Cervical Screw System is a multi-component device, manufactured from Titanium-based and CoCr materials, consisting of occipital screws and straight and pre-bent rods that longitudinally connect the occiput with the posterior cervical spine. The system is intended to stabilize and fuse the spine in degenerative disc disease, spinal fusion, cervical fractures and in surgically repaired spinal pseudoarthrosis. In addition, it is used in deformity correction e.g. scoliosis to correct and stabilize the spine.

The M.U.S.T. MINI Extension implants have been designed with the same or similar shape, dimensions and materials as the previously cleared Medacta M.U.S.T. MINI Posterior Cervical Screws System (K171369), Synthes Synapse OCT System (K070573 and K142838), DePuy Mountaineer OCT Spinal System (K042508 and K110353) and Alphatec Solanas Avalon Posterior Fixation System (K111076).

The M.U.S.T. MINI Extension implants are manufactured with the same materials of the Medacta predicate device M.U.S.T. MINI Posterior Cervical Screws System (K171369): Ti-6Al-4V ELI (ISO 5832-3 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium allov + ASTM F136 Standard Specification for Wrought Titanium-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)) and CoCtMo (ISO 5832-12 Implants for surgery -- Metallic materials -- Part 12: Wrought cobalt-chromium-molybdenum alloy + ASTM F1537 Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)).

Additionally, the new 4x and 6x package for the already cleared (K171369) M.U.S.T. MINI set screw implant have been introduced.

Indications for Use V.

The M.U.S.T. MINI Posterior Cervical Screw System is intended to provide immobilization and stabilization of spinal segments as an adjunct to fusion, in skeletally mature patient, for the following acute and chronic instabilities of the cervical spine (C1 to C7) and the thoracic spine from T1-T3: traumatic spinal fractures and/or traumatic dislocations; instability or deformity; failed previous fusions (e.g., pseudarthrosis); tumors involving the cervical spine; degenerative disease, including intractable radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability.

The M.U.S.T. MINI Posterior Cervical Screw System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.

In order to achieve additional levels of fixation, the M.U.S.T. MINI Posterior Cervical Screw System may be connected to the M.U.S.T. System rods with the M.U.S.T. MINI rod connectors. Transition rods with differing diameters may also be used to connect the M.U.S.T. MINI Posterior Cervical Screw System to the M.U.S.T. System. Refer to the M.U.S.T. System package insert for a list of the M.U.S.T. Indications of Use.

{5}------------------------------------------------

When used with the Occipital Plate, the M.U.S.T MINI Posterior Cervical Screw System is also intended to provide immobilization and stabilization for the occipito-cervico-thoracic junction (occiput - T3) in treatment of the instabilities mentioned above, including occipitocervical dislocation.

VI. Comparison of Technological Characteristics

The M.U.S.T. MINI Extension implants and the predicate devices share the following characteristics:

  • design;
  • range of products;
  • materials of construction; ●
  • biocompatibility;
  • device usage;
  • sterility;
  • shelf life: and
  • packaging.

The subject devices are substantially identical to the predicate devices M.U.S.T. MINI Posterior Cervical Screws System (K171369), Synthes Synapse OCT System (K070573 and K142838), DePuy Mountaineer OCT Spinal System (K042508 and K110353) and Alphatec Solanas Avalon Posterior Fixation System (K111076).

Due to the extensive history of use in currently marketed medical devices, biocompatibility testing conducted on the predicate device M.U.S.T. MINI Posterior Cervical Screws System (K171369) for the same materials supports the biological safety of the M.U.S.T. MINI Extension implants.

Performance Data VII.

Testing was conducted according to written protocols with acceptance criteria that were based on standards. The following mechanical studies were performed in substantial equivalence determination:

Non-Clinical Studies:

  • Characterization Test
    • o Design Validation Workshop
  • Performance Tests
    • static compression bending test: ASTM F2706-08 (Reapproved 2014) Standard Test o Methods for Occipital-Cervical and Occipital-Cervical-Thoracic Spinal Implant Constructs in a Vertebrectomy Model
    • static torsion test: ASTM F2706-08 (Reapproved 2014) Standard Test Methods for o Occipital-Cervical and Occipital-Cervical-Thoracic Spinal Implant Constructs in a Vertebrectomy Model

{6}------------------------------------------------

  • dynamic axial compression test: ASTM F2706-08 (Reapproved 2014) Standard Test O Methods for Occipital-Cervical and Occipital-Cervical-Thoracic Spinal Implant Constructs in a Vertebrectomy Model
  • dynamic torsion test: ASTM F2706-08 (Reapproved 2014) Standard Test Methods for O Occipital-Cervical and Occipital-Cervical-Thoracic Spinal Implant Constructs in a Vertebrectomy Model
  • axial gripping test: ASTM F1798-13 Standard Test Method for Evaluating the Static and o Fatigue Properties of Interconnection Mechanisms and Subassemblies Used in Spinal Arthrodesis Implants
  • plate torque to failure test o
  • screw torque to failure test o
  • Pyrogenicity
    • Bacterial Endotoxin Test (LAL test) was conducted according to European o Pharmacopoeia §2.6.14 (which is equivalent to USP chapter <85>) and pyrogen test according to USP chapter <151> for pyrogenicity determination
    • the subject devices are not labeled as non-pyrogenic or pyrogen free o

Clinical Studies:

  • No clinical studies were conducted. ●

VIII. Conclusion

Based on the above information, the M.U.S.T. MINI Extension implants are substantially equivalent to the identified predicate devices.

Substantial equivalence has been demonstrated through a comparison of intended use, design and technological characteristics, as well as performance evaluations. The M.U.S.T. MINI Extension implants are as safe and effective as the predicate devices M.U.S.T. MINI Posterior Cervical Screws System (K171369), Synapse OCT System (K070573 and K142838), Mountaineer OCT Spinal System (K042508 and K110353) and Solanas Avalon Posterior Fixation System (K111076).

§ 888.3075 Posterior cervical screw system.

(a)
Identification. Posterior cervical screw systems are comprised of multiple, interconnecting components, made from a variety of materials that allow an implant system to be built from the occiput to the upper thoracic spine to fit the patient's anatomical and physiological requirements, as determined by preoperative cross-sectional imaging. Such a spinal assembly consists of a combination of bone anchors via screws (i.e., occipital screws, cervical lateral mass screws, cervical pedicle screws, C2 pars screws, C2 translaminar screws, C2 transarticular screws), longitudinal members (e.g., plates, rods, including dual diameter rods, plate/rod combinations), transverse or cross connectors, interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors), and closure mechanisms (e.g., set screws, nuts). Posterior cervical screw systems are rigidly fixed devices that do not contain dynamic features, including but not limited to: non-uniform longitudinal elements or features that allow more motion or flexibility compared to rigid systems.Posterior cervical screw systems are intended to provide immobilization and stabilization of spinal segments in patients as an adjunct to fusion for acute and chronic instabilities of the cervical spine and/or craniocervical junction and/or cervicothoracic junction such as: (1) Traumatic spinal fractures and/or traumatic dislocations; (2) deformities; (3) instabilities; (4) failed previous fusions (
e.g., pseudarthrosis); (5) tumors; (6) inflammatory disorders; (7) spinal degeneration, including neck and/or arm pain of discogenic origin as confirmed by imaging studies (radiographs, CT, MRI); (8) degeneration of the facets with instability; and (9) reconstruction following decompression to treat radiculopathy and/or myelopathy. These systems are also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.(b)
Classification. Class II (special controls). The special controls for posterior cervical screw systems are:(1) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(2) Nonclinical performance testing must demonstrate the mechanical function and durability of the implant.
(3) Device components must be demonstrated to be biocompatible.
(4) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(5) Labeling must include the following:
(i) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(ii) Intended use and indications for use including levels of fixation;
(iii) Device specific warnings, precautions, and contraindications that include the following statements:
(A) “Precaution: Preoperative planning prior to implantation of posterior cervical screw systems should include review of cross-sectional imaging studies (
e.g., CT and/or MRI) to evaluate the patient's cervical anatomy including the transverse foramen, neurologic structures, and the course of the vertebral arteries. If any findings would compromise the placement of these screws, other surgical methods should be considered. In addition, use of intraoperative imaging should be considered to guide and/or verify device placement, as necessary.”(B) “Precaution: Use of posterior cervical pedicle screw fixation at the C3 through C6 spinal levels requires careful consideration and planning beyond that required for lateral mass screws placed at these spinal levels, given the proximity of the vertebral arteries and neurologic structures in relation to the cervical pedicles at these levels.”
(iv) Identification of magnetic resonance (MR) compatibility status;
(v) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user, and;
(vi) Detailed instructions of each surgical step, including device removal.