Search Filters

Search Results

Found 2 results

510(k) Data Aggregation

    K Number
    K251523
    Device Name
    Cios Spin
    Date Cleared
    2025-07-29

    (74 days)

    Product Code
    Regulation Number
    892.1650
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K233748

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Cios Spin is a mobile X-ray system designed to provide X-ray imaging of the anatomical structures of patients during clinical applications. Clinical applications may include but are not limited to interventional fluoroscopic, gastro-intestinal, endoscopic, urologic, pain management, orthopedic, neurologic, vascular, cardiac, critical care, and emergency room procedures. The patient population may include pediatric patients.

    Device Description

    The Cios Spin (VA31A) mobile fluoroscopic C-arm X-ray System is designed for the surgical environment. The Cios Spin provides comprehensive image acquisition modes to support orthopedic and vascular procedures. The system consists of two major components:
    a. The C-arm with X-ray source on one side and the flat panel detector on the opposite side. The c-arm can be angulated in both planes and be lifted vertically, shifted to the side and move forward/backward by an operator.
    b. The second unit is the image display station with a moveable trolley for the image processing and storage system, image display and documentation. Both units are connected to each other with a cable.

    The following modifications were made to the Predicate Device the Cios Spin Mobile X-ray System cleared under Premarket Notification K210054 on February 5, 2021. Siemens Medical Solutions USA, Inc. submits this Traditional 510(k) to request clearance for the Subject Device Cios Spin (VA31A). The following modification is incorporated in the Predicate Device to create the Subject Device, for which Siemens is seeking 510(k) clearance:

    1. Software updated from VA30 to VA31A to support the below software features
      A. Updated Retina 3D for optional enlarged 3D Volume of 25cm x 25cm x 16cm
      B. Introduction of NaviLink 3D Lite
      C. Universal Navigation Interface (UNI)
      D. Updated InstantLink with Extended NXS Interface
    2. Updated Collimator
    3. Updated FLC Imaging system PC with new PC hardware Updated AppHost PC with High Performance Graphic Card
    4. New Eaton UPS 5P 850i G2 as successor of UPS 5P 850i due to obsolescense
    AI/ML Overview

    Based on the provided FDA 510(k) clearance letter for the Siemens Cios Spin (VA31A), here's an analysis of the acceptance criteria and the study proving the device meets them:

    Important Note: The provided document is a 510(k) summary, which often summarizes testing without providing granular details on study design, sample sizes, and ground truth establishment to the same extent as a full clinical study report. Therefore, some information requested (e.g., specific number of experts for ground truth, adjudication methods) may not be explicitly stated in this summary. The focus of this 510(k) is primarily on demonstrating substantial equivalence to a predicate device, especially for software and hardware modifications, rather than a de novo effectiveness study.


    Acceptance Criteria and Reported Device Performance

    The 510(k) summary primarily focuses on demonstrating that the modifications to the Cios Spin (VA31A) do not introduce new safety or effectiveness concerns compared to its predicate device (Cios Spin VA30) and a reference device (CIARTIC Move VB10A) that incorporates some of the new features. The acceptance criteria are implicitly tied to meeting various industry standards and demonstrating functionality and safety through non-clinical performance testing.

    Table 1: Acceptance Criteria and Reported Device Performance

    Acceptance Criteria CategorySpecific Criteria (Implicit/Explicit from Text)Reported Device Performance / Evidence
    Software FunctionalitySoftware specifications met acceptance criteria as stated in test plans."All test results met all acceptance criteria."
    Enlarged Volume Field of View (Retina 3D)Functionality and performance of new 25cm x 25cm x 16cm 3D volume."A non-clinical test 'Enlarged Volume Field of View' testing were conducted." The feature was cleared in the CIARTIC Move (K233748), implying its performance was previously validated.
    NaviLink 3D Lite FunctionsFunctionality and performance of the new navigation interface.Part of software updates VA31A; "All test results met all acceptance criteria."
    Universal Navigation Interface (UNI)Functionality and performance of UNI.Part of software updates VA31A; "All test results met all acceptance criteria." UNI was present in the reference device CIARTIC Move (K233748).
    InstantLink with Extended NXS InterfaceFunctionality and performance of updated interface.Part of software updates VA31A; "All test results met all acceptance criteria."
    Electrical SafetyCompliance with IEC 60601-1, IEC 60601-2-43, IEC 60601-2-54."The system complies with the IEC 60601-1, IEC 60601-2-43, and IEC 60601-2-54 standards for safety."
    Electromagnetic Compatibility (EMC)Compliance with IEC 60601-1-2."The system complies with... the IEC 60601-1-2 standard for EMC."
    Human Factors/UsabilityDevice is safe and effective for intended users, uses, and environments. Human factors addressed."The Human Factor Usability Validation showed that Human factors are addressed in the system test according to the operator's manual and in clinical use tests with customer reports and feedback forms."
    Risk MitigationIdentified hazards are controlled; risk analysis completed."The Risk analysis was completed, and risk control was implemented to mitigate identified hazards."
    Overall Safety & EffectivenessNo new issues of safety or effectiveness introduced by modifications."Results of all conducted testing and clinical assessments were found acceptable and do not raise any new issues of safety or effectiveness."
    Compliance with Standards/RegulationsAdherence to various 21 CFR regulations and standards (e.g., ISO 14971, IEC 62304).Extensive list of complied standards, including 21 CFR sections 1020.30, 1020.32, and specific IEC/ISO standards mentioned in Section 9.

    Study Details Proving Device Meets Acceptance Criteria

    The study described is primarily a non-clinical performance testing and software verification and validation effort rather than a traditional clinical trial.

    1. Sample sizes used for the test set and data provenance:

      • Test Set Sample Size: Not explicitly stated as a "sample size" in the context of patients or images for performance evaluation. The testing described is "Unit, Subsystem, and System Integration testing" and "software verification and regression testing." This type of testing uses a diverse set of test cases designed to cover functionality, performance, and safety requirements. For the "Enlarged Volume Field of View," it's a non-clinical test, likely using phantoms or simulated data.
      • Data Provenance: Not applicable in terms of patient data provenance for the non-clinical and software testing described. This is bench testing and software validation. Customer reports and feedback forms are mentioned for human factors, but specific details on their origin (country, etc.) are not provided. The manufacturing site is Kemnath, Germany.
    2. Number of experts used to establish the ground truth for the test set and qualifications of those experts:

      • Not explicitly stated. For non-clinical performance and software testing, "ground truth" is typically established by engineering specifications, known correct outputs for given inputs, and compliance with industry standards. If clinical use tests involved subjective evaluation, the number and qualifications of experts are not detailed, but they are implied to be "healthcare professionals" (operators are "adequately trained").
    3. Adjudication method for the test set:

      • Not applicable/Not explicitly stated. For software and bench testing, adjudication usually refers to a process of resolving discrepancies in ratings or measurements. Given the nature of this submission (software/hardware modifications and non-clinical testing), formal clinical adjudication methods (like 2+1, 3+1 for image reviews) are not described as part of the primary evidence. Acceptance is based on test cases meeting predefined engineering requirements.
    4. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

      • No. An MRMC study was not conducted. This 510(k) is for a mobile X-ray system with software and hardware updates, not an AI-assisted diagnostic device where evaluating human reader performance with and without AI would be relevant. The "AI" mentioned (Retina 3D, NaviLink 3D) refers to advanced imaging/navigation features, not machine learning for diagnostic interpretation.
    5. If a standalone (i.e., algorithm only without human-in-the-loop performance) was done:

      • Yes, implicitly. The "non-clinical test 'Enlarged Volume Field of View' testing" and other "Unit, Subsystem, and System Integration testing" for functionality and performance are essentially standalone tests of the device's components and software without immediate human interpretation in a diagnostic loop. The acceptance criteria for these tests refer to technical performance endpoints, not diagnostic accuracy.
    6. The type of ground truth used:

      • Engineering Specifications and Standard Compliance: For the performance and safety testing, the "ground truth" is adherence to predefined engineering requirements (e.g., image dimensions, system response times, electrical safety limits) and compliance with national and international industry standards (e.g., IEC 60601 series, ISO 14971, NEMA PS 3.1).
      • For the Human Factors Usability Validation, "customer reports and feedback forms" serve as a form of "ground truth" regarding user experience and usability.
    7. The sample size for the training set:

      • Not applicable. This submission describes modifications to an X-ray imaging system, not the development of a machine learning algorithm that requires a separate training set. The existing software (VA30) was updated to VA31A. The "training" for the software itself would have occurred during its initial development, not for this specific 510(k) submission.
    8. How the ground truth for the training set was established:

      • Not applicable. As above, this information is not relevant to this specific 510(k) submission, as it focuses on modifications to an existing device rather than the development of a new AI/ML algorithm requiring a training set and its associated ground truth.
    Ask a Question

    Ask a specific question about this device

    K Number
    K251520
    Date Cleared
    2025-07-09

    (54 days)

    Product Code
    Regulation Number
    892.1650
    Reference & Predicate Devices
    Why did this record match?
    Reference Devices :

    K231692, K233748

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The Cios Alpha is a mobile X-Ray system designed to provide X-ray imaging of the anatomical structures of patient during clinical applications. Clinical applications may include, but are not limited to: interventional fluoroscopic, gastro-intestinal, endoscopic, urologic, pain management, orthopedic, neurologic, vascular, cardiac, critical care, and emergency room procedures. The patient population may include pediatric patients.

    The Cios Flow is a mobile X-Ray system designed to provide X-ray imaging of the anatomical structures of patient during clinical applications. Clinical applications may include, but are not limited to: interventional fluoroscopic, gastro-intestinal, endoscopic, urologic, pain management, orthopedic, neurologic, vascular, cardiac, critical care and emergency room procedures. The patient population may include pediatric patients.

    Device Description

    The Cios Alpha and Cios Flow (VA31A) mobile fluoroscopic C-arm X-ray System is designed for the surgical environment. The Cios Alpha and Cios Flow provide comprehensive image acquisition modes to support orthopedic and vascular procedures. The system consists of two major components:

    a) The C-arm with X-ray source on one side and the flat panel detector on the opposite side. The C-arm can be angulated in both planes and lifted vertically, shifted to the side, and moved forward/backward by an operator.

    b) The second unit is the image display station with a movable trolley for the image processing and storage system, image display, and documentation. Both units are connected with a cable.

    The main unit is connected to the main power outlet, and the trolley is connected to a data network.

    The following modifications were made to the predicate device Cios Alpha and Cios Flow. Siemens Medical Solutions USA, Inc. submits this Bundled Traditional 510k to request clearance for Subject Devices Cios Alpha and Cios Flow (VA31A) for the following device modifications made to the Predicates Device Cios Alpha and Cios Flow (VA30).

    This 510k submission, Subject Devices "Cios Alpha" and "Cios Flow" with software version VA31A, will support the following categories of modifications made to the Subject Devices in comparison to the Predicate Devices:

    1. Software updated from VA30 to VA31A to support the following software features: A. Updated InstantLink with Extended NXS Interface
    2. Updated Collimator
    3. New optional flat detector Trixell Pixium 3131SOD with IGZO (Indium Gallium Zinc Oxide) technology
    4. Updated FLC imaging system with new PC hardware Updated the High Performance Graphic Card on the Apphost PC
    5. Updated Eaton UPS 5P 850i G2 as successor of UPS 5P 850i due to obsolescense
    6. The Cios Alpha is also known as "Cios Alpha.neo" The Cios Flow is also known as Cios Flow.neo
    AI/ML Overview

    The provided 510(k) clearance letter details modifications to an existing fluoroscopic X-ray system, Cios Alpha and Cios Flow, specifically focusing on software updates and hardware changes (e.g., a new flat detector).

    However, the provided text does not contain explicit acceptance criteria tables for performance metrics (such as image quality, diagnostic accuracy, sensitivity, specificity, or AUC) or the results of a statistically powered, pre-specified study proving the device meets these criteria in a comparative effectiveness setting (e.g., MRMC study).

    The document primarily focuses on bench testing, software validation, and compliance with recognized standards to demonstrate the substantial equivalence of the modified device to its predicate. It states that "All test results met all acceptance criteria" for software modifications and that a "Clinical Cadaver Report" was conducted to assess the non-inferiority of a new flat panel detector's subjective image quality. This suggests acceptance criteria were established internally for these tests, but they are not detailed in the provided document.

    Therefore, many of the requested details about acceptance criteria, study design, and performance metrics for clinical effectiveness are not present in this 510(k) clearance letter summary. The document's purpose is to justify substantial equivalence based on safety, hardware/software changes, and compliance with standards, rather than proving enhanced clinical effectiveness through a comparative study.

    Here's an attempt to answer based on the available information, noting what is not provided:


    Acceptance Criteria and Device Performance

    No explicit quantitative acceptance criteria table for clinical performance (e.g., diagnostic accuracy metrics like sensitivity, specificity, AUC) is provided in the document. The document discusses "acceptance criteria" in the context of:

    • Software Validation: "The testing results show that all the software specifications have met the acceptance criteria." (Page 14)
    • Non-clinical Testing: "All test results met all acceptance criteria." (Page 10)
    • Clinical Cadaver Report (Subjective Image Quality): The IGZO detector was considered "non-inferior (equal or better) concerning the subjective image quality for four anatomical regions that have been investigated in the ortho-trauma setting." (Page 14) This implies a qualitative acceptance criterion of non-inferiority for subjective image quality, but no numerical thresholds are given.

    Since no specific performance metrics with numerical acceptance criteria are provided for clinical use, a table demonstrating reported device performance against such criteria cannot be created from this text. The document refers broadly to testing results meeting "acceptance criteria" but does not define them publicly.

    Study Details Proving Device Meets Acceptance Criteria

    The primary "study" mentioned for clinical relevance is a Clinical Cadaver Report.

    1. Sample Size and Data Provenance:

      • Test Set Sample Size: Not specified for the Clinical Cadaver Report.
      • Data Provenance: The study was a "Clinical Cadaver Report." This implies an experimental, non-human, pre-clinical study. The country of origin is not specified but given the manufacturing site in Germany, it's possible the testing was conducted there or at Siemens facilities elsewhere. It is inherently prospective as it's a pre-market development activity.
    2. Number of Experts and Qualifications:

      • Number of Experts: Not specified.
      • Qualifications: Not specified.
    3. Adjudication Method:

      • Adjudication Method: Not specified. Given it was a "subjective image quality" assessment, it would likely involve multiple readers, but the method (e.g., 2+1, 3+1) is not disclosed.
    4. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study:

      • Was an MRMC study done? The document does not indicate that a formal MRMC comparative effectiveness study was done to show human readers improve with AI vs. without AI assistance. The "Clinical Cadaver Report" focused on the subjective image quality of the new detector, not human performance with AI. The device described primarily appears to be an imaging system, not an AI-assisted diagnostic tool that would typically undergo MRMC studies for improved human interpretation.
    5. Standalone Performance:

      • Was a standalone (algorithm only without human-in-the-loop performance) done? Not explicitly stated in the context of clinical performance. The "software functional, verification, and System validation testing" (Page 11) and "software validation data" (Page 14) refer to the algorithm's internal performance against specifications, not its standalone diagnostic accuracy on clinical images.
    6. Type of Ground Truth Used:

      • Ground Truth for Clinical Cadaver Report: In the context of "subjective image quality," the "ground truth" would be the consensus assessment of the evaluating experts regarding the quality of the images generated by the new IGZO detector compared to the a-Si detector. It is not pathology or outcomes data.
    7. Training Set (if applicable for AI/Software components):

      • Sample Size for Training Set: The document does not mention an AI component that would require a distinct "training set" in the common understanding of machine learning. The "software" referred to is control software for the X-ray system, not a diagnostic AI algorithm.
    8. Ground Truth for Training Set:

      • How ground truth was established for training set: Not applicable, as there's no indication of machine learning model training. The software modifications are described as updates to system control, interfaces, and hardware support.

    In summary: The provided 510(k) clearance letter demonstrates that the modified Cios Alpha and Cios Flow systems meet regulatory requirements for substantial equivalence, primarily through non-clinical testing, compliance with safety standards, and software validation against internal acceptance criteria. A "Clinical Cadaver Report" assessed the subjective image quality of a new detector, finding it non-inferior. However, the document does not contain the specific details of clinical performance acceptance criteria, sample sizes for such studies, or a multi-reader comparative effectiveness study as would be seen for AI-enabled diagnostic tools.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1