Search Filters

Search Results

Found 1 results

510(k) Data Aggregation

    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use
    • HemoSphere Advanced Monitor with HemoSphere Swan-Ganz Module: The HemoSphere advanced monitor when used with the HemoSphere Swan-Ganz module and Edwards Swan-Ganz catheters is indicated for use in adult and pediatric critical care patients requiring monitoring of cardiac output (continuous [CO] and intermittent [iCO]) and derived hemodynamic parameters in a hospital environment. Pulmonary artery blood temperature monitoring is used to compute continuous and intermittent CO with thermodilution technologies. It may also be used for monitoring hemodynamic parameters in conjunction with a perioperative goal directed therapy protocol in a hospital environment. Refer to the Edwards Swan-Ganz catheter and Swan-Ganz Jr catheter indications for use statements for information on target patient population specific to the catheter being used. Refer to the Intended Use statement for a complete list of measured and derived parameters available for each patient population.

    • HemoSphere Advanced Monitor with HemoSphere Oximetry Cable: The HemoSphere Advanced Monitor when used with the HemoSphere Oximetry Cable and Edwards oximetry catheters is indicated for use in adult and pediatric critical care patients requiring monitoring of venous oxygen saturation (SvO2 and ScvO2) and derived hemodynamic parameters in a hospital environment. Refer to the Edwards oximetry catheter indications for use statement for information on target patient population specific to the catheter being used. Refer to the Intended Use statement for a complete list of measured and derived parameters available for each patient population.

    • HemoSphere Advanced Monitor with HemoSphere Pressure Cable: The HemoSphere advanced monitor when used with the HemoSphere pressure cable is indicated for use in adult and pediatric critical care patients in which the balance between cardiac function, fluid status, vascular resistance and pressure needs continuous assessment. It may be used for monitoring of hemodynamic parameters in conjunction with a perioperative goal directed therapy protocol in a hospital environment. Refer to the Edwards FloTrac sensor, FloTrac Jr sensor, Acumen IQ sensor, and TruWave disposable pressure transducer indications for use statements for information on target patient populations specific to the sensor/transducer being used. The Edwards Acumen Hypotension Prediction Index software feature provides the clinician with physiological insight into a patient's likelihood of future hypotensive events and the associated hemodynamics. The Acumen HPI feature is intended for use in surgical or non-surgical patients receiving advanced hemodynamic monitoring. The Acumen HPI feature is considered to be additional quantitative information regarding the patient's physiological condition for reference only and no therapeutic decisions should be made based solely on the Acumen Hypotension Prediction Index (HPI) parameter. Refer to the Intended Use statement for a complete list of measured and derived parameters available for each patient population.

    • HemoSphere Advanced Monitor with Acumen Assisted Fluid Management Feature and Acumen IQ Sensor: The Acumen Assisted Fluid Management (AFM) software feature provides the clinician with physiological insight into a patient's estimated response to fluid therapy and the associated hemodynamics. The Acumen AFM software feature is intended for use in surgical patients >=18 years of age, that require advanced hemodynamic monitoring. The Acumen AFM software feature offers suggestions regarding the patient's physiological condition and estimated response to fluid therapy. Acumen AFM fluid administration suggestions are offered to the clinician; the decision to administer a fluid bolus is made by the clinician, based upon review of the patient's hemodynamics. No therapeutic decisions should be made based solely on the Assisted Fluid Management suggestions. The Acumen Assisted Fluid Management software feature may be used with the Acumen AFM Cable and Acumen IQ fluid meter.

    • HemoSphere Advanced Monitor with HemoSphere Technology Module and ForeSight Oximeter Cable: The non-invasive ForeSight oximeter cable is intended for use as an adjunct monitor of absolute regional hemoglobin oxygen saturation of blood under the sensors in individuals at risk for reduced-flow or no flow ischemic states. The ForeSight Oximeter Cable is also intended to monitor relative changes of total hemoglobin of blood under the sensors. The ForeSight Oximeter Cable is intended to allow for the display of StO2 and relative change in total hemoglobin on the HemoSphere advanced monitor.

      • When used with large sensors, the ForeSight Oximeter Cable is indicated for use on adults and transitional adolescents >=40 kg.
      • When used with medium sensors, the ForeSight Oximeter Cable is indicated for use on pediatric subjects >=3 kg.
      • When used with small sensors, the ForeSight Oximeter Cable is indicated for cerebral use on pediatric subjects <8 kg and non-cerebral use on pediatric subjects <5kg.

      Refer to the Intended Use statement for a complete list of measured and derived parameters available for each patient population.

    • HemoSphere Advanced Monitor with HemoSphere ClearSight Module: The HemoSphere advanced monitor when used with the HemoSphere ClearSight module, pressure controller or Smart Pressure Controller and a compatible Edwards finger cuff are indicated for patients over 18 years of age in which the balance between cardiac function, fluid status and vascular resistance needs continuous assessment. It may be used for monitoring hemodynamic parameters in conjunction with a perioperative goal directed therapy protocol in a hospital environment. In addition, the noninvasive system is indicated for use in patients with comorbidities for which hemodynamic optimization is desired and invasive measurements are difficult. The HemoSphere advanced monitor and compatible Edwards finger cuffs noninvasively measures blood pressure and associated hemodynamic parameters. The Edwards Lifesciences Acumen Hypotension Prediction Index feature provides the clinician with physiological insight into a patient's likelihood of future hypotensive events and the associated hemodynamics. The Acumen HPI feature is intended for use in surgical or non-surgical patients receiving advanced hemodynamic monitoring. The Acumen HPI feature is considered to be additional quantitative information regarding the patient's physiological condition for reference only and no therapeutic decisions should be made based solely on the Hypotension Prediction Index (HPI) parameter.

    • Indication for Acumen IQ Plus and VitaWave Plus finger cuffs: The Acumen IQ Plus and VitaWave Plus finger cuff adult indicated for patients over 18 years of age to continuously blood pressure and associated hemodynamic parameters when used with a compatible Edwards monitoring platform.

    • Smart Pressure Controller: The Smart Pressure Controller is intended for use with an Edwards compatible noninvasive monitoring system - composed of compatible monitor, pressure source (pump), compatible Edwards finger cuff(s) and pressure controller - for continuous noninvasive measurement of blood pressure and associated hemodynamic parameters. Refer to the operator's manual of the compatible Edwards monitor being used for specific information on the intended use environment and patient population.

    • Intended Use: The HemoSphere advanced monitoring platform is intended to be used by qualified personnel or trained clinicians in a critical care environment in a hospital setting. The Viewfinder remote mobile application can be used for supplemental near real-time remote display of monitored hemodynamic parameter data as well as faults, alerts and notifications generated by the HemoSphere advanced monitoring platform. The HemoSphere advanced monitoring platform is intended for use with compatible Edwards Swan-Ganz and oximetry catheters, Swan-Ganz Jr catheters, FloTrac sensors, FloTrac Jr sensors, Acumen IQ sensors, TruWave disposable pressure transducers, ForeSight/ForeSight Jr sensors, Acumen IQ fluid meter, and ClearSight/ClearSight Jr/Acumen IQ/Acumen IQ Plus/VitaWave/VitaWave Plus finger cuffs

    Device Description

    The HemoSphere Advanced Monitor was designed to simplify the customer experience by providing one platform with modular solutions for all hemodynamic monitoring needs. The user can choose from available optional sub-system modules or use multiple sub-system modules at the same time. This modular approach provides the customer with the choice of purchasing and/or using specific monitoring applications based on their needs. Users are not required to have all of the modules installed at the same time for the platform to function.

    AI/ML Overview

    The provided FDA 510(k) clearance letter and summary for the Edwards Lifesciences HemoSphere Advanced Monitor (HEM1) and associated components outlines the device's indications for use and the testing performed to demonstrate substantial equivalence to predicate devices. However, it does not contain the detailed acceptance criteria or the specific study results (performance data) in the format typically required to answer your request fully, especially for acceptance criteria and performance of an AI/algorithm-based feature like the Hypotension Prediction Index (HPI) or Assisted Fluid Management (AFM).

    The document states:

    • "Completion of all verification and validation activities demonstrated that the subject devices meet their predetermined design and performance specifications."
    • "Measured and derived parameters were tested using a bench simulation. Additionally, system integration and mechanical testing was successfully conducted to verify the safety and effectiveness of the device. All tests passed."
    • "Software verification testing was conducted, and documentation was provided per FDA's Guidance for Industry and FDA Staff, "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices". All tests passed."

    This indicates that internal performance specifications were met, but the specific metrics, thresholds, and study designs for achieving those specifications are not detailed in this public summary.

    Therefore, I cannot populate the table with specific numerical performance data against acceptance criteria for the HPI or AFM features, nor can I provide details on sample size, expert ground truth establishment, or MRMC studies, as this information is not present in the provided text.

    The text primarily focuses on:

    • Substantial equivalence to predicate devices.
    • Indications for Use for various HemoSphere configurations and modules.
    • Description of software and hardware modifications (e.g., integration of HPI algorithm, new finger cuffs).
    • General categories of testing performed (Usability, System Verification, Electrical Safety/EMC, Software Verification) with a blanket statement that "All tests passed."

    Based on the provided document, here's what can and cannot be stated:


    1. A table of acceptance criteria and the reported device performance

    Cannot be provided with specific numerical data or thresholds from the given text. The document only states that "all verification and validation activities demonstrated that the subject devices meet their predetermined design and performance specifications." No specific acceptance criteria values (e.g., "Accuracy > X%", "Sensitivity > Y%", "Mean Absolute Error < Z") or reported performance values are publicly disclosed in this summary for any parameter, including HPI or AFM. For measured and derived parameters (like CO, MAP, etc.), it states they were tested using bench simulation, and "All tests passed," implying they met internal accuracy specifications for physical measurements, but these are not detailed.

    2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)

    Cannot be provided from the given text. The document mentions "bench simulation" for measured and derived parameters, but does not provide sample sizes for these, or the type/provenance of data for testing the HPI or AFM algorithms.

    3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)

    Cannot be provided from the given text. The document doesn't describe the process of establishing ground truth for the algorithms, nor does it mention the number or qualifications of experts involved in such a process.

    4. Adjudication method (e.g. 2+1, 3+1, none) for the test set

    Cannot be provided from the given text. There is no mention of adjudication methods for any test sets.

    5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

    Cannot be provided from the given text. The document does not describe any MRMC studies or human-in-the-loop performance evaluation regarding the HPI or AFM features. The HPI and AFM features are described as providing "physiological insight" and "suggestions," not as tools requiring reader interpretation in a comparative effectiveness study as typically seen with imaging AI.

    6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done

    Likely yes, based on the nature of the algorithms, but no specific performance metrics are provided. The HPI and AFM features are stated to provide "quantitative information" and "suggestions." The text indicates "System Verification (Non-Clinical Performance)" and "Software Verification" were performed, suggesting standalone evaluation against internal specifications, but no detailed results are provided. The HPI algorithm itself was "previously cleared in K230057," implying its standalone performance would have been evaluated during that prior clearance, but those details are not in this document.

    7. The type of ground truth used (expert consensus, pathology, outcomes data, etc)

    Cannot be definitively stated from the given text. For the HPI feature, which predicts future hypotensive events, ground truth would typically involve actual patient outcomes (e.g., observed hypotensive events). For AFM, which suggests response to fluid therapy, ground truth might involve observed physiological responses to fluid boluses. However, the document does not specify how these ground truths were established for the purpose of testing the algorithms.

    8. The sample size for the training set

    Cannot be provided from the given text. The document does not mention details about the training data for the algorithms.

    9. How the ground truth for the training set was established

    Cannot be provided from the given text. The document does not mention details about the training data or its ground truth establishment.


    Summary of Device Features Mentioned in Relation to Performance/Testing (General):

    • HemoSphere Advanced Monitor and various modules/accessories: The document primarily describes this as a monitoring platform for various hemodynamic parameters (CO, SvO2, MAP, etc.). Performance for these measured and derived parameters was tested via "bench simulation," and "All tests passed," implying they met internal benchmarks for accuracy and reliability.
    • Acumen Hypotension Prediction Index (HPI) software feature: This feature provides "physiological insight into a patient's likelihood of future hypotensive events." It was integrated from a previously cleared device (K230057). The document states "There are no changes to the Acumen HPI algorithm from what was cleared in K230057." This implies that the acceptance criteria and supporting studies for the HPI algorithm itself would be found in the K230057 clearance documentation, not typically resubmitted in detail for integration into another platform unless the integration process significantly altered its functionality or intended use.
    • Acumen Assisted Fluid Management (AFM) software feature: This feature provides "physiological insight into a patient's estimated response to fluid therapy" and "suggestions." It also mentions "Acumen AFM fluid administration suggestions are offered to the clinician; the decision to administer a fluid bolus is made by the clinician, based upon review of the patient's hemodynamics. No therapeutic decisions should be made based solely on the Assisted Fluid Management suggestions." This language suggests it's a supportive, advisory tool, rather than a diagnostic one requiring strict accuracy metrics in the same way. No performance specifics for AFM are given.
    • Usability Study: Conducted to ensure primary operating functions and critical tasks can be performed without patient or user harm. Determined that "intended users can perform primary operating functions and critical tasks of the system without any usability issues that may lead to patient or user harm." This is an acceptance criterion for human factors, but not for algorithmic performance.
    • Electrical Safety and EMC, Software Verification: All tests passed. These are general product safety and quality criteria, not specific to the performance of the predictive algorithms.

    To obtain the detailed performance data, acceptance criteria, sample sizes, and ground truth information for the HPI or AFM algorithms, one would typically need to refer to the original 510(k) submission for the HPI algorithm (K230057) and potentially separate documentation for the AFM feature, which are not included in this general clearance letter for the HemoSphere platform update.

    Ask a Question

    Ask a specific question about this device

    Page 1 of 1