Search Results
Found 1 results
510(k) Data Aggregation
(92 days)
FineCross M3
The product (FineCross M3) is intended to be percutaneously into blood vessels and support a guide wire while performing PCI (percutaneous coronary intervention). The product is also intended for injection of radiopaque contrast media for angiography. The product should not be used in cerebral and peripheral vessels.
FineCross M3 is a single use, ethylene oxide sterilized device that is intended to be percutaneously introduced into blood vessels and support a guide wire while performing PCI (percutaneous coronary intervention). The product is also intended for injection of radiopaque contrast media for angiography. FineCross M3 features a three-layer construction, which consists of a stainless steel mesh braid sandwiched between an outer layer of polyester elastomer and an inner layer of polytetrafluoroethylene. The outer surface of the catheter is coated with hydrophilic polymer.
Here's an analysis of the provided text regarding the acceptance criteria and study for the FineCross M3 device, structured to answer your specific questions.
1. Table of Acceptance Criteria and Reported Device Performance
The document provides a list of performance tests conducted on the FineCross M3 device. For each test, it states that "Performance testing met the predetermined acceptance criteria and is acceptable for clinical use throughout its shelf life." However, it does not provide specific numerical or qualitative values for the acceptance criteria, nor does it detail the specific reported device performance values for each test. Instead, it offers a general statement of compliance.
Test Item | Acceptance Criteria | Reported Device Performance |
---|---|---|
Radio-detectability | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Surface | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Peak tensile force | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Freedom from leakage | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Flowrate | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Distal tip | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Fluid leakage | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Sub-atmospheric pressure air leakage | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Stress cracking | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Resistance to separation from axial load | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Resistance to separation from unscrewing | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Resistance to overriding | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Torque strength | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Kink strength of catheter shaft | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Compatibility with guide wire | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Product dimension | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Exterior sliding characteristics (early phase) | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Particulate evaluation | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Coating Integrity | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Butting resistance | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Strength of distal part | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Simulated use Usability test | Predetermined acceptance criteria (not specified) | Met acceptance criteria |
Biocompatibility Testing:
Test Item | Acceptance Criteria | Reported Device Performance |
---|---|---|
Cytotoxicity | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Sensitization | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Intracutaneous Reactivity | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Acute Systemic Toxicity | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Pyrogenicity | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Hemolysis | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Thrombogenicity (with and without anticoagulant agent) | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Complement Activation (C3a and SC5b-9) | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Physicochemical Profile (Physicochemical and FT-IR) | Compliance with ISO 10993-1 and FDA Guidance | Demonstrate device is biocompatible |
Accelerated-aged (2 years) Cytotoxicity | Compliance with ISO 10993-1 and FDA Guidance (to show biocompatibility maintained throughout shelf life) | Demonstrate device is biocompatible throughout shelf life |
Accelerated-aged (2 years) Hemolysis | Compliance with ISO 10993-1 and FDA Guidance (to show biocompatibility maintained throughout shelf life) | Demonstrate device is biocompatible throughout shelf life |
Accelerated-aged (2 years) Physicochemical Profile | Compliance with ISO 10993-1 and FDA Guidance (to show biocompatibility maintained throughout shelf life) | Demonstrate device is biocompatible throughout shelf life |
2. Sample Size Used for the Test Set and Data Provenance
The document does not specify the sample sizes used for each of the performance or biocompatibility tests. It only states that tests were performed on "non-aged and accelerated aged samples" for performance testing (except Radio-detectability and Simulated Use Usability) and on "non-aged, sterile, whole device" and "accelerated-aged (2 years), sterile, whole device" for biocompatibility.
The data provenance is industrial (manufacturer-conducted testing) and likely combines both novel testing for this specific device and potentially established testing protocols based on industry standards. It is not patient or clinical data, so terms like "retrospective" or "prospective" are not applicable in this context. The country of origin for the manufacturing and testing is Japan (Ashitaka Factory of Terumo Corporation).
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts
This document describes non-clinical performance and biocompatibility testing of a medical device (a microcatheter). It does not involve diagnostic interpretation or patient data where "ground truth" would typically be established by human experts like radiologists. Therefore, this information is not applicable to the provided document. The ground truth for these tests is based on objective, measurable physical and chemical properties and engineering standards.
4. Adjudication Method for the Test Set
As this document describes non-clinical performance and biocompatibility testing, an "adjudication method" in the context of expert consensus (like 2+1 or 3+1 for clinical interpretations) is not applicable. The results of these tests are determined by adherence to pre-defined scientific and engineering protocols and acceptance criteria.
5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
There was no MRMC comparative effectiveness study and no AI component mentioned in this 510(k) submission. This K-submission is for a medical device (microcatheter), not an AI/software-as-a-medical-device.
6. If a Standalone (i.e. algorithm only without human-in-the loop performance) was done
This is not applicable as the device is a physical medical instrument (microcatheter), not an algorithm or AI system.
7. The Type of Ground Truth Used (expert concensus, pathology, outcomes data, etc)
For the performance tests, the "ground truth" is defined by engineering specifications, material science principles, and established industry standards. For example, the freedom from leakage is tested against a standard preventing fluid escape, and material biocompatibility is tested against ISO 10993 standards and FDA guidance. This is not a "ground truth" derived from expert consensus, pathology, or outcomes data in a clinical sense.
8. The Sample Size for the Training Set
There is no training set in this context. This is a physical medical device, not a machine learning model.
9. How the Ground Truth for the Training Set Was Established
This is not applicable as there is no training set mentioned in the document.
Ask a specific question about this device
Page 1 of 1