(267 days)
FG Bone Graft B is recommended for:
- Augmentation or reconstructive treatment of the alveolar ridge.
- Filling of infrabony periodontal defects.
- Filling of defects after root resection, apicoectomy, and cystectomy.
- Filling of extraction sockets to enhance preservation of the alveolar ridge.
- Elevation of the maxillary sinus floor.
- Filling of periodontal defects in conjunction with products intended for Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR).
- Filling of peri-implant defects in conjunction with products intended for Guided Bone Regeneration (GBR).
FG Bone Graft B is a sterile, synthetic, multi-porous biocompatible ceramic matrix in granular form for filling bone defects. The material with microporous structure supports rapid ossification with local bone. With its phase purity of >= 99%, the ceramic material complies with US standard specification ASTM F 1088-04. The validated manufacturing process guarantees batch conformity and reproducibility.
The FDA 510(k) clearance letter for FG Bone Graft B indicates that the device is substantially equivalent to a predicate device (CERASORB M DENTAL). The clearance letter references non-clinical tests performed to demonstrate this equivalence, focusing on chemical composition, physical properties, and performance in vivo.
Here's a breakdown of the acceptance criteria and the study that proves the device meets them, based on the provided text:
1. Table of Acceptance Criteria and Reported Device Performance
Description | Acceptance Criteria | Reported Device Performance and Results |
---|---|---|
Chemical Composition | ||
Complete chemical composition, summing to 100% by mass, including all additives and the Chemical Abstracts Service (CAS®) registry number of all components. | Consisting of ≥ 99% beta-Tricalcium Phosphate (ß-TCP) | 100% |
Description of the composition, including an elemental analysis, identifying the trace impurities. | Conc.(ppm) Pb ≤30, As ≤3, Cd ≤5, Hg ≤5 | Conc.(ppm) Pb 0, As 0.33, Cd 0.09, Hg 0 |
Physical Properties | ||
SEM micrographs, showing particle size, shape, and porosity. | The product behaves like a porous structure and is similar to the reference product. | The SEM result showed the surface characteristic of the TCP sample (FG Bone Graft B) is similar in structure to the predicate device (Cerasorb) via 600X, 1000X, and 3000x SEM photos. |
A plot of the resorption of your device versus time showing the time for total clearance or integration under a representative model. | Similar trend changes to the comparison products. | ~90% degraded by 12 weeks |
Healing time, i.e., the earliest time at which implant loading may be successfully attempted. | N/A (Not explicitly defined as a numerical criterion, but evaluated in vivo). | The defect fill rate was observed to be 21.5% at 4 weeks, increasing to 26.2% by 8 weeks, and reaching up to 33.9% by 12 weeks. (This implies a healing progression, though not a specific "loading time" metric). |
Phase purity, i.e., the relative mass percentages of crystalline and amorphous phases (%). | Similar trend changes to the comparison products. | 100% β-TCP |
Calcium to phosphorus ratio (Ca/P). | Ca/P ratio >1.5 | Ca/P ratio: 1.89 - 1.95 |
Volumetric porosity (% void space). | The porosity is approximately 70% ± 5% or similar to the reference product. | Volumetric porosity: 68.3% |
Particle size distribution plot (μ). | The mean value of the particle size distribution is within the declared specifications, or the median and mode are within the specification range. | 500-1000μm |
pH. | Similar trend changes to the comparison products. | ~7.9 over 7 days |
Performance In Vivo | ||
New bone formation. | New bone formation performance comparable to the predicate. | New bone formation increased over time at comparable rates to the predicate. |
Material degradation (residual material). | Material degradation rates comparable to the predicate. | FG Bone Graft B degraded at comparable rates to the predicate over 12 weeks. |
Inflammatory response. | Minimal to mild inflammatory response, no significant adverse reactions. | Minimal to mild inflammatory response, with no significant adverse reactions. |
2. Sample Size Used for the Test Set and Data Provenance
- Sample size for the test set: The document states that the in vivo study used a "Beagle dog" model, and the animals were "divided into groups: test group (FG Bone Graft B), positive control group (Cerasorb, a commercial β-TCP), and a negative control (empty defect)." However, the exact number of animals in each group or total animal count is not specified in the provided text.
- Data provenance: The study was a prospective in vivo animal study performed on Beagle dogs. The location/country of origin of the study is not explicitly stated in the provided text, but the submitter "Full Golden Biotech Co., Ltd." is located in Taiwan.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications
- Number of experts: Not explicitly stated. The histological and radiographic analyses were likely performed by trained professionals (e.g., veterinary pathologists, radiologists), but the number of reviewers or their specific qualifications are not detailed in the provided text.
- Qualifications of experts: Not specified beyond the implied expertise in conducting and analyzing in vivo studies (e.g., histology, micro-CT).
4. Adjudication Method for the Test Set
- Adjudication method: Not explicitly stated. For animal studies, consistency and blinding are typically employed, but a formal "adjudication method" in the sense of multiple human readers for consensus is not described for this non-AI bone graft device. The results are presented as quantitative measurements and observations (e.g., "new bone formation increased," "minimal to mild inflammatory response").
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done
- MRMC study: No, an MRMC comparative effectiveness study was not done. This type of study is typically performed for AI/image analysis devices where the AI's impact on human reader performance is being assessed. This document describes a traditional preclinical performance study for a bone graft material.
6. If a Standalone (i.e. algorithm only without human-in-the loop performance) was done
- Standalone performance: N/A. This is a bone graft material, not an algorithm or AI device. The "performance" refers to the biological and physical properties of the material itself, not the output of a software algorithm.
7. The Type of Ground Truth Used
- Type of ground truth: The ground truth for the in vivo study (which is the primary performance study) was established through direct anatomical, histological, and radiographic assessments of the bone defects in the animal model.
- Histological analysis: Quantified new bone formation, material degradation, and inflammatory response. This involves microscopic examination of stained tissue sections, which is considered a gold standard for assessing tissue regeneration and integration.
- Radiographic analysis: Used micro-CT to assess bone density and bone volume, providing quantitative structural data.
- Comparison to predicate: The "ground truth" for showing substantial equivalence was the performance of the established predicate device (Cerasorb) under the same study conditions.
8. The Sample Size for the Training Set
- Sample size for training set: N/A. This device is a bone graft material, not an AI or machine learning algorithm. Therefore, there is no "training set."
9. How the Ground Truth for the Training Set was Established
- Ground truth for training set: N/A. As there is no AI component, there is no training set and no ground truth establishment for such a set.
§ 872.3930 Bone grafting material.
(a)
Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and polyglycolic acids, or collagen, that is intended to fill, augment, or reconstruct periodontal or bony defects of the oral and maxillofacial region.(b)
Classification. (1) Class II (special controls) for bone grafting materials that do not contain a drug that is a therapeutic biologic. The special control is FDA's “Class II Special Controls Guidance Document: Dental Bone Grafting Material Devices.” (See § 872.1(e) for the availability of this guidance document.)(2) Class III (premarket approval) for bone grafting materials that contain a drug that is a therapeutic biologic. Bone grafting materials that contain a drug that is a therapeutic biologic, such as biological response modifiers, require premarket approval.
(c)
Date premarket approval application (PMA) or notice of product development protocol (PDP) is required. Devices described in paragraph (b)(2) of this section shall have an approved PMA or a declared completed PDP in effect before being placed in commercial distribution.