(258 days)
Alinity m EBV is an in vitro polymerase chain reaction (PCR) assay for the quantitation of Epstein-Barr Virus (EBV) DNA in human EDTA plasma on the automated Alinity m System.
Alinity m EBV is intended for use as an aid in the management of EBV in transplant patients. In patients undergoing monitoring of EBV, serial DNA measurements can be used to indicate the need for potential treatment changes and to assess viral response to treatment.
The results from Alinity m EBV must be interpreted within the context of all relevant clinical and laboratory findings.
Alinity m EBV is not cleared for use as a screening test for donors of blood, blood products, or human cells, tissues, and cellular and tissue-based products (HCT/Ps) for EBV.
Alinity m EBV is an in vitro polymerase chain reaction (PCR) assay for the quantitation of EBV DNA in human plasma.
This device is similar to the predicate device originally cleared (K212778) with the exception that the subject device may use MomentaTaq DNA Polymerase as an alternative to KAPA2G DNA Polymerase in the reagent formulation of the assay. This formulation difference does not introduce any changes to sample processing, assay procedure, or data reduction.
Additional studies were initiated to support the formulation of the assay with MomentaTaq DNA Polymerase. Supplemental data from these studies were used with data previously obtained from the analytical and clinical testing studies submitted in K212778.
The steps of the Alinity m EBV consist of sample preparation, real-time PCR assembly, amplification/detection, result calculation, and reporting. All stages of the Alinity m EBV procedure are executed automatically by the Alinity m System. No intermediate processing or transfer steps are performed by the user. The Alinity m System is designed to be a random-access analyzer that can perform the Alinity m EBV assay in parallel with other Alinity m assays on the same instrument.
Alinity m EBV requires three separate assay specific kits as follows:
-
Alinity m EBV AMP Kit (List No. 09N43-095), consisting of 2 types of multi-well assay trays. The amplification trays (AMP TRAY 1) contain lyophilized, unit-dose PCR amplification/detection reagents and lyophilized, unit-dose IC in separate wells, and the activation trays (ACT TRAY 2) contain liquid unit-dose activation reagent. The intended storage condition for the Alinity m EBV AMP Kit is 2°C to 8°C.
-
Alinity m EBV CTRL Kit (List No. 09N43-085), consisting of negative controls, low positive controls, and high positive controls, each supplied as liquid in single-use tubes. The intended storage condition for the Alinity m EBV CTRL Kit is –25°C to –15°C.
-
Alinity m EBV CAL Kit (List No. 09N43-075), consisting of 2 calibrator levels, each supplied as liquid in single-use tubes. The intended storage condition for the Alinity m EBV CAL Kit is –25°C to –15°C.
EBV DNA from human plasma is extracted automatically on-board in the Alinity m System using the Alinity m Sample Prep Kit 2, Alinity m Lysis Solution, and Alinity m Diluent Solution. The Alinity m System employs magnetic microparticle technology to facilitate nucleic acid capture, wash, and elution. The resulting purified nucleic acids are then combined with liquid unit-dose Alinity m EBV activation reagent and lyophilized unit-dose Alinity m EBV amplification/detection reagents and transferred into a reaction vessel. Alinity m Vapor Barrier Solution is then added to the reaction vessel which is then transferred to an amplification/detection unit for PCR amplification, and real-time fluorescence detection of EBV targets.
At the beginning of the Alinity m EBV sample preparation process, a lyophilized unit-dose IC on the AMP Tray is rehydrated by the Alinity m System and delivered into each sample preparation reaction. The IC is then processed through the entire sample preparation and real-time PCR procedure along with the specimens, calibrators, and controls to demonstrate proper sample processing and validity.
The Alinity m EBV amplification/detection reagents consist of enzymes, primers, probes, and activation reagents that enable polymerization and detection.
An EBV calibration curve is required for determination of EBV DNA concentration. Two levels of calibrators are processed through sample preparation and PCR to generate the calibration curve. The concentration of EBV DNA in specimens and controls is then calculated from the stored calibration curve.
Assay controls are tested at or above an established minimum frequency to help ensure that instrument and reagent performance remains satisfactory. During each control event, a negative control, a low-positive control, and a high-positive control are processed through sample preparation and PCR procedures that are identical to those used for specimens.
The Alinity m EBV assay also utilizes the following:
- Alinity m EBV Application Specification File, (List No. 09N43-05B)
- Alinity m System and System Software (List No. 08N53-002)
- Alinity m Sample Prep Kit 2 (List No. 09N12-001)
- Alinity m Specimen Dilution Kit I (List No. 09N50-001)
- Alinity m System Solutions, (List No. 09N20):
- Alinity m Lysis Solution (List No. 09N20-001)
- Alinity m Diluent Solution (List No. 09N20-003)
- Alinity m Vapor Barrier Solution, (List No. 09N20-004)
- Alinity m Tubes and Caps (List No. 09N49):
- Alinity m LRV Tube (List No. 09N49-001)
- Alinity m Transport Tubes Pierceable Capped (List No. 09N49-010)
- Alinity m Transport Tube (List No. 09N49-011)
- Alinity m Pierceable Cap (List No. 09N49-012)
- Alinity m Aliquot Tube (List No. 09N49-013)
This document, K243489, is a 510(k) clearance letter for the Alinity m EBV assay, specifically focusing on the use of MomentaTaq DNA Polymerase as an alternative to KAPA2G DNA Polymerase. The primary goal of the studies described is to demonstrate that the device formulated with MomentaTaq DNA Polymerase performs equivalently to the previously cleared device formulated with KAPA2G DNA Polymerase (K212778).
Here's an analysis of the acceptance criteria and study information provided:
1. Table of Acceptance Criteria and Reported Device Performance
Performance Characteristic | Acceptance Criteria with MomentaTaq Formulation (Implicitly compared to KAPA2G performance) | Reported Device Performance (MomentaTaq Formulation) |
---|---|---|
Limit of Detection (LoD) | Overall detection rate of ≥ 95% at 20 IU/mL (based on previous clearance of K212778). | Overall detection rate of 97.2% at 20 IU/mL. |
Linear Range | Linear across 50 IU/mL (1.70 Log IU/mL) to 200,000,000 IU/mL (8.30 Log IU/mL). | Linear across 15 IU/mL to 250,000,000 IU/mL (1.18 Log IU/mL to 8.40 Log IU/mL). |
Precision (Within-laboratory SD) | ≤ 0.25 Log IU/mL for 500 IU/mL to 200,000,000 IU/mL (2.70 Log IU/mL to 8.30 Log IU/mL). | Achieved for all panels in this range (0.06-0.19 Log IU/mL). |
Precision (Within-laboratory SD) | ≤ 0.50 Log IU/mL for 20 IU/mL to |
§ 866.3183 Quantitative viral nucleic acid test for transplant patient management.
(a)
Identification. A quantitative viral nucleic acid test for transplant patient management is identified as a device intended for prescription use in the detection of viral pathogens by measurement of viral DNA or RNA using specified specimen processing, amplification, and detection instrumentation. The test is intended for use as an aid in the management of transplant patients with active viral infection or at risk for developing viral infections. The test results are intended to be interpreted by qualified healthcare professionals in conjunction with other relevant clinical and laboratory findings.(b)
Classification. Class II (special controls). The special controls for this device are:(1) The labeling required under § 809.10(b) of this chapter must include:
(i) A prominent statement that the device is not intended for use as a donor screening test for the presence of viral nucleic acid in blood or blood products.
(ii) Limitations which must be updated to reflect current clinical practice. These limitations must include, but are not limited to, statements that indicate:
(A) Test results are to be interpreted by qualified licensed healthcare professionals in conjunction with clinical signs and symptoms and other relevant laboratory results; and
(B) Negative test results do not preclude viral infection or tissue invasive viral disease and that test results must not be the sole basis for patient management decisions.
(iii) A detailed explanation of the interpretation of results and acceptance criteria must be provided and include specific warnings regarding the potential for variability in viral load measurement when samples are measured by different devices. Warnings must include the following statement, where applicable: “Due to the potential for variability in [analyte] measurements across different [analyte] assays, it is recommended that the same device be used for the quantitation of [analyte] when managing individual patients.”
(iv) A detailed explanation of the principles of operation and procedures for assay performance.
(2) Design verification and validation must include the following:
(i) Detailed documentation of the device description, including all parts that make up the device, ancillary reagents required for use with the assay but not provided, an explanation of the methodology, design of the primer/probe sequences, rationale for the selected gene target, and specifications for amplicon size, guanine-cytosine content, and degree of nucleic acid sequence conservation. The design and nature of all primary, secondary and tertiary quantitation standards used for calibration must also be described.
(ii) A detailed description of the impact of any software, including software applications and hardware-based devices that incorporate software, on the device's functions;
(iii) Documentation and characterization (
e.g., determination of the identity, supplier, purity, and stability) of all critical reagents and protocols for maintaining product integrity throughout its labeled shelf-life.(iv) Stability data for reagents provided with the device and indicated specimen types, in addition to the basis for the stability acceptance criteria at all time points chosen across the spectrum of the device's indicated life cycle, which must include a time point at the end of shelf life.
(v) All stability protocols, including acceptance criteria.
(vi) Final lot release criteria along with documentation of an appropriate justification that lots released at the extremes of the specifications will meet the claimed analytical and clinical performance characteristics as well as the stability claims.
(vii) Risk analysis and documentation demonstrating how risk control measures are implemented to address device system hazards, such as Failure Mode Effects Analysis and/or Hazard Analysis. This documentation must include a detailed description of a protocol (including all procedures and methods) for the continuous monitoring, identification, and handling of genetic mutations and/or novel viral stains (
e.g., regular review of published literature and annual in silico analysis of target sequences to detect possible primer or probe mismatches). All results of this protocol, including any findings, must be documented.(viii) Analytical performance testing that includes:
(A) Detailed documentation of the following analytical performance studies: limit of detection, upper and lower limits of quantitation, inclusivity, precision, reproducibility, interference, cross reactivity, carry-over, quality control, specimen stability studies, and additional studies as applicable to specimen type and intended use for the device;
(B) Identification of the viral strains selected for use in analytical studies, which must be representative of clinically relevant circulating strains;
(C) Inclusivity study results obtained with a variety of viral genotypes as applicable to the specific assay target and supplemented by in silico analysis;
(D) Reproducibility studies that include the testing of three independent production lots;
(E) Documentation of calibration to a reference standard that FDA has determined is appropriate for the quantification of viral DNA or RNA (
e.g., a recognized consensus standard); and(F) Documentation of traceability performed each time a new lot of the standardized reference material to which the device is traceable is released, or when the field transitions to a new standardized reference material.
(ix) Clinical performance testing that includes:
(A) Detailed documentation from either a method comparison study with a comparator that FDA has determined is appropriate, or results from a prospective clinical study demonstrating clinical validity of the device;
(B) Data from patient samples, with an acceptable number of the virus-positive samples containing an analyte concentration near the lower limit of quantitation and any clinically relevant decision points. If an acceptable number of virus-positive samples containing an analyte concentration near the lower limit of quantitation and any clinically relevant decision cannot be obtained, contrived samples may be used to supplement sample numbers when appropriate, as determined by FDA;
(C) The method comparison study must include predefined maximum acceptable differences between the test and comparator method across all primary outcome measures in the clinical study protocol; and
(D) The final release test results for each lot used in the clinical study.