(211 days)
The ONVOY Acetabular System is intended for use in reconstruction of the articulating surface of the acetabular portion of the hip that is severely disabled and/or very painful resulting from:
- Non-inflammatory degenerative joint disease including osteoarthritis, traumatic arthritis, and avascular necrosis.
- Rheumatoid arthritis.
- Correction of functional deformity.
- Treatment of non-union, femoral neck fracture, and trochanteric fractures of the proximal femur with head involvement, unmanageable using other techniques.
- Revision of previously failed total hip arthroplasty.
- Dislocation risks.
The ONVOY Acetabular System is used in conjunction with Globus/StelKast Hip Systems. The acetabular components of this hip system are intended for cementless fixation.
The ONVOY™ additional implants consist of acetabular shells, liners, and dual mobility liners and bearings that are used as part of a complete total hip system in conjunction with a femoral head and femoral stem in total hip arthroplasty. New femoral head sizes are also being introduced. Implants are available in various configurations and sizes to fit a wide variety of patient anatomy. Shells are available in a cluster-hole design, liners are available in hooded, non-hooded, and lateralized designs used in conjunction with ONVOY shells. Dual mobility polyethylene bearings are used with dual mobility liners.
ONVOY™ acetabular shells are additively manufactured from titanium alloy powder per ASTM F3001. Acetabular liners and dual mobility bearings are manufactured from highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) with Vitamin E. Dual mobility liners are manufactured from Cobalt Chrome (CoCr) alloy and femoral heads are manufactured from alumina matrix composite ceramic.
This document is an FDA 510(k) clearance letter for a medical device called the "ONVOY™ Acetabular System." It details the device's purpose, indications for use, and the basis for its substantial equivalence to other legally marketed devices.
However, it does not contain information about acceptance criteria and a study proving a device meets those criteria for an AI/Software as a Medical Device (SaMD).
This clearance is for an orthopedic implant (hip prosthesis components: acetabular shells, liners, dual mobility implants, and femoral heads), not a software device or an AI application. Therefore, the questions related to MRMC studies, ground truth establishment, training sets, and expert adjudication are not applicable to the content provided in this FDA 510(k) letter.
The "Performance Data" section solely refers to mechanical and material testing standards relevant to orthopedic implants (fatigue, wear, range of motion, material composition, etc.) and states that "Performance data demonstrate substantial equivalence to the predicate devices." It does not describe any clinical study involving human readers or AI performance metrics.
In summary, based on the provided text, I cannot describe acceptance criteria and a study that proves a device meets those criteria, as the document pertains to an orthopedic implant and not an AI/SaMD.
§ 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.
(a)
Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device intended to be implanted to replace a hip joint. The device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across the joint. This generic type of device has a femoral component made of a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy or a titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high molecular weight polyethylene articulating bearing surface fixed in a metal shell made of Co-Cr-Mo or Ti-6Al-4V. The femoral stem and acetabular shell have a porous coating made of, in the case of Co-Cr-Mo substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average pore size between 100 and 1,000 microns, interconnecting porosity, and a porous coating thickness between 500 and 1,500 microns. The generic type of device has a design to achieve biological fixation to bone without the use of bone cement.(b)
Classification. Class II.