K Number
K240187
Date Cleared
2024-06-05

(133 days)

Product Code
Regulation Number
872.3640
Panel
DE
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

BioHorizons Tapered Pro Conical dental implants are intended for use in the mandible or maxilla for use as an artificial root structure for single tooth replacement or for fixed bridgework and dental implants may be restored immediately (1) with a temporary prosthesis that is not in functional occlusion or (2) when splinted together for multiple tooth replacement or when stabilized with an overdenture supported by multiple implants.

BioHorizons Tapered Short Conical dental implants are intended for use in the mandible or maxilla as an artificial root structure for single tooth replacement or fixed bridgework and dental retention. These dental implants must be restored using delayed loading, for single tooth replacement, or may be used with a terminal or intermediate abutment for fixed or removable bridgework or for overdentures. Tapered Short Conical implants should be used only when there is not enough space for a longer implant. If the ratio of crown length is unfavorable, the biomechanical risk factors have to be considered and appropriate measures have to be taken by the dental professional.

BioHorizons conical dental prosthetic components connected to the endosseous dental implants are intended for use as an aid in prosthetic rehabilitations of the maxillary or mandibular arch to provide support for prosthetic restorations.

All digitally designed abutments for use with Conical CAD/CAM Ti Blanks and Ti Bases are to be sent to a BioHorizons validated milling center for manufacture.

Device Description

The purpose of this submission is to obtain marketing clearance for an endosseous dental implant and abutment system, Tapered Pro Conical Implant System, from BioHorizons Implant Systems Inc. The Tapered Pro Conical Implant System includes a range of ental implants and prosthetic components, BioHorizons Tapered Pro Conical implants feature a tapered screw-shaped design with a reverse buttress thread. Cutting flutes are incorporated into the thread to be self-tapping when placed into the prepared surgical site. The outer surface of the implant has been roughened with resorbable blast texturing (RBT) using a hydroxyapatite blast media. Internally, the implant features a deep conical prosthetic connection between implants and abutments with six anti-rotation cams at the base of the connection, intended to interface with the three cams of the prosthetic components. It is available with or without Laser-Lok treatment applied to the collar of the implant.

Tapered Pro Conical Implants are available in a range of implant diameters and lengths with two prosthetic platform (implant/abutment connection) sizes, as shown below. Internal surfaces of the Tapered Pro Conical Regular platform implants are anodized yellow to distinguish them from Narrow platform implants.

Abutments are available in multiple designs, including straight and angled abutments intended for single tooth and multi-unit restorations. The Conical Ti-Base abutments are a two-piece abutment composed of a pre-manufactured Ti Base component and a CAD/CAM patient-matched mesostructure (superstructure) composed of sagemax® NexxZr zirconia (K130991).

AI/ML Overview

The provided text is a 510(k) premarket notification summary for a dental implant system. It does not describe a study to prove the device meets acceptance criteria related to an AI/ML-driven medical device, nor does it contain information on the performance data, sample sizes, expert ground truth establishment, or multi-reader multi-case studies typically associated with such devices.

The document focuses on demonstrating substantial equivalence to predicate dental implants and their components. The "PERFORMANCE DATA" section (page 7 of the PDF, starting on page 8 of the transcription) lists non-clinical data such as validation of sterilization, bacterial endotoxin testing, shelf-life testing, biocompatibility, MRI compatibility, and mechanical testing, which are standard for dental implants.

Therefore, I cannot fulfill the request as the provided text does not contain the necessary information about acceptance criteria and a study proving the device meets those criteria, specifically for an AI/ML medical device.

To be explicit, the document states:

  • "No clinical data were included in this submission." (Page 7)
  • The performance data discussed are entirely non-clinical and relate to the physical and material properties of the dental implants, not an AI or software component assessing images or providing diagnostic assistance.

§ 872.3640 Endosseous dental implant.

(a)
Identification. An endosseous dental implant is a prescription device made of a material such as titanium or titanium alloy that is intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as artificial teeth, in order to restore a patient's chewing function.(b)
Classification. (1) Class II (special controls). The device is classified as class II if it is a root-form endosseous dental implant. The root-form endosseous dental implant is characterized by four geometrically distinct types: Basket, screw, solid cylinder, and hollow cylinder. The guidance document entitled “Class II Special Controls Guidance Document: Root-Form Endosseous Dental Implants and Endosseous Dental Implant Abutments” will serve as the special control. (See § 872.1(e) for the availability of this guidance document.)(2)
Classification. Class II (special controls). The device is classified as class II if it is a blade-form endosseous dental implant. The special controls for this device are:(i) The design characteristics of the device must ensure that the geometry and material composition are consistent with the intended use;
(ii) Mechanical performance (fatigue) testing under simulated physiological conditions to demonstrate maximum load (endurance limit) when the device is subjected to compressive and shear loads;
(iii) Corrosion testing under simulated physiological conditions to demonstrate corrosion potential of each metal or alloy, couple potential for an assembled dissimilar metal implant system, and corrosion rate for an assembled dissimilar metal implant system;
(iv) The device must be demonstrated to be biocompatible;
(v) Sterility testing must demonstrate the sterility of the device;
(vi) Performance testing to evaluate the compatibility of the device in a magnetic resonance (MR) environment;
(vii) Labeling must include a clear description of the technological features, how the device should be used in patients, detailed surgical protocol and restoration procedures, relevant precautions and warnings based on the clinical use of the device, and qualifications and training requirements for device users including technicians and clinicians;
(viii) Patient labeling must contain a description of how the device works, how the device is placed, how the patient needs to care for the implant, possible adverse events and how to report any complications; and
(ix) Documented clinical experience must demonstrate safe and effective use and capture any adverse events observed during clinical use.