(240 days)
The VitalFlow™ Centrifugal Pump is intended to pump blood through the extracorporeal circuit for circulatory support up to 48 hours, in adult patients with acute respiratory failure or acute cardiopulmonary failure, where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent.
The VitalFlow™ Centrifugal Pump is driven by the VitalFlow™ Console and Drive Motor, or the Emergency Handcrank.
The VitalFlow Centrifugal Pump is a sterile, single-use centrifugal blood pump. It is a non-invasive, nonpyrogenic device designed to move blood through the extracorporeal circuit by centrifugal force. The pump is the disposable portion of the pumping system and it is electromagnetically coupled to an instrument that monitors and displays the flow and pressure of the blood. Blood enters the inlet port of the pump, where a cone with impeller blades within the pump housing rotates and the blood is gently accelerated toward the outlet of the pump.
The VitalFlow Centrifugal Pump can be driven through magnetic coupling by an External Drive Motor or the Emergency Handcrank.
The provided document is a 510(k) Summary for the VitalFlow™ Centrifugal Pump, a Class II medical device. It details the device's indications for use, description, and studies conducted to demonstrate its substantial equivalence to predicate and reference devices.
Here's an analysis of the acceptance criteria and study information:
1. Table of Acceptance Criteria and Reported Device Performance
The document does not explicitly present a table of "acceptance criteria" with quantitative targets in the way one might expect for a diagnostic AI device (e.g., target specificity, sensitivity). Instead, the acceptance criteria are framed within the context of demonstrating substantial equivalence to predicate devices and meeting specific "Special Controls" outlined in 21 CFR 870.4100. The performance is assessed through various bench, animal, and real-world clinical data.
Therefore, the table below summarizes the Special Controls as acceptance criteria and how the device's performance, as reported, addresses them.
Acceptance Criteria (Special Controls from 21 CFR 870.4100) | Reported Device Performance and Evidence |
---|---|
Technological Characteristics | Geometry and design parameters are consistent with the intended use in extracorporeal life support procedures. Device is designed to be compatible with other extracorporeal circuit devices and accessories. (Implies meeting functional specifications for flow, pressure, etc.) |
Biocompatibility | Demonstrated to be biocompatible in accordance with ISO 10993-1:2018 and GLP (21 CFR 58). |
Sterility and Shelf-life | Testing demonstrates sterility and maintenance of sterility, integrity, durability, and reliability over the stated shelf-life. |
Non-clinical Performance | Demonstrated substantial equivalence through performance characteristics on the bench, mechanical integrity, durability, and reliability. Bench studies demonstrated a blood pump use duration of 14 days, with mechanical stability and critical flow performance attributes maintained. High flow blood trauma testing and hydraulic performance were also conducted. |
In vivo Evaluation | A 96-hour animal study (13 sheep) to evaluate safety and performance for long-term ECMO use (target ACT 180-220 sec). Sustained high (5 L/min) and low (2 L/min) blood flow rates for 96 hours with no clots in any location in the device and confirmed blood pump functionality. |
Clinical Evidence of Performance | A summary of real-world evidence (1048 reports) from ELSO.org (Extracorporeal Life Support Organization registry) on the Affinity CP Centrifugal Blood Pump (which the VitalFlow Centrifugal Pump is stated to be "the same as"). This demonstrated acceptable long-term performance in ECMO patients over 200,000 hours of ECMO time, averaging 225.6 hours per adult patient. The overall complication rate (34.7%) and specific mechanical complication rate (1.2%) for the AP40 group were comparable to or better than "All Other Pumps" (Non-AP40 group) in the registry, with a notably lower moderate or severe hemolysis rate (1.1% vs 4.6%). The pump failure rate (per 1000 hours) was 0.06 for VitalFlow (AP40) vs 0.03 for other pumps. |
Labeling | Instructions for use include detailed summary of non-clinical evaluations, installation, circuit setup, maintenance, adverse effects, and performance characteristics relevant to compatibility. |
2. Sample Size Used for the Test Set and Data Provenance
The document describes several types of studies:
- Bench Performance Evaluations: No specific sample size is given for individual tests, but it states "Design verification studies were performed by the original manufacturer... and supplemented by MC3 bench performance testing, including long-term characterization." This implies multiple samples were tested for each characteristic.
- Animal Studies (In vivo evaluation): A sample size of 13 sheep was used for the 96-hour study. The data provenance is a controlled research environment.
- Clinical Performance (Real-world evidence): This utilized 1048 reports from the ELSO.org registry for the Affinity CP Centrifugal Blood Pump (AP40 group). The document states this is a "summary of real-world evidence," implying retrospective data extraction from an international registry. The country of origin for the data isn't explicitly stated but the ELSO registry collects data internationally. The comparison group ("All Other Pumps") involved 51,032 reports.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Their Qualifications
This device is not an AI diagnostic device that relies on expert interpretation of images or signals to establish a "ground truth" in the traditional sense. The "ground truth" for its performance is established through objective measures in bench testing (e.g., flow, pressure, mechanical integrity), physiological parameters in animal studies (e.g., presence/absence of clots, functionality), and reported clinical outcomes in the ELSO registry.
Therefore, there is no mention of "experts" establishing ground truth in the context of adjudication for a test set. Design verification and animal study results would be assessed by engineers, veterinarians, and researchers involved in those studies. Clinical outcomes in the ELSO registry are reported data.
4. Adjudication Method for the Test Set
Given that this is not an AI diagnostic device evaluating, for example, medical images requiring consensus on findings, there is no adjudication method (e.g., 2+1, 3+1) mentioned or applicable for the test sets described.
5. If a Multi Reader Multi Case (MRMC) Comparative Effectiveness Study was done
No, an MRMC comparative effectiveness study was not done. This type of study typically assesses the performance of human readers (e.g., radiologists) with and without AI assistance for tasks like diagnosis or detection. The VitalFlow™ Centrifugal Pump is a mechanical device, not an AI diagnostic tool, so such a study is not relevant.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done
No, a standalone (algorithm-only) performance study was not done, as the VitalFlow™ Centrifugal Pump is a physical medical device. The "standalone" performance here would refer to the device's function outside of a human-in-the-loop context, which is effectively what the bench and animal studies demonstrate regarding its mechanical integrity and ability to pump blood.
7. The Type of Ground Truth Used
The "ground truth" for evaluating the VitalFlow™ Centrifugal Pump's performance is multi-faceted:
- Bench Testing: Engineering specifications and performance metrics (e.g., pressure-flow curves, durability, wear, integrity, blood trauma data).
- Animal Studies: Direct observation of device functionality, physiological parameters, and absence of adverse events like clot formation in a living system over a defined period (96 hours).
- Clinical Performance (Real-world evidence): Reported clinical outcomes and complication rates from a large patient registry (ELSO.org), providing real-world data on pump failure, hemolysis, circuit changes, and other adverse events. This relies on the accuracy of data submitted to the registry.
8. The Sample Size for the Training Set
The document is for a traditional medical device (centrifugal pump), not an AI/Machine Learning device. Therefore, there is no "training set" in the context of AI model development that would typically have a distinct sample size. The design verification, bench testing, and animal studies serve as part of the overall development and validation process.
9. How the Ground Truth for the Training Set Was Established
As there is no AI training set, this question is not applicable. The "ground truth" for the device's design and engineering would be based on established medical and engineering principles, material science, and regulatory requirements, which are then verified through rigorous testing, as mentioned above.
§ 870.4100 Extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure.
(a)
Identification. An extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary support (>6 hours) is a system of devices and accessories that provides assisted extracorporeal circulation and physiologic gas exchange of the patient's blood in patients with acute respiratory failure or acute cardiopulmonary failure, where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent. The main devices and accessories of the system include, but are not limited to, the console (hardware), software, and disposables, including, but not limited to, an oxygenator, blood pump, heat exchanger, cannulae, tubing, filters, and other accessories (e.g., monitors, detectors, sensors, connectors).(b)
Classification —Class II (special controls). The special controls for this device are:(1) The technological characteristics of the device must ensure that the geometry and design parameters are consistent with the intended use, and that the devices and accessories in the circuit are compatible;
(2) The devices and accessories in the circuit must be demonstrated to be biocompatible;
(3) Sterility and shelf-life testing must demonstrate the sterility of any patient-contacting devices and accessories in the circuit and the shelf life of these devices and accessories;
(4) Non-clinical performance evaluation of the devices and accessories in the circuit must demonstrate substantial equivalence of the performance characteristics on the bench, mechanical integrity, electromagnetic compatibility (where applicable), software, durability, and reliability;
(5) In vivo evaluation of the devices and accessories in the circuit must demonstrate their performance over the intended duration of use, including a detailed summary of the clinical evaluation pertinent to the use of the devices and accessories to demonstrate their effectiveness if a specific indication (patient population and/or condition) is identified; and
(6) Labeling must include a detailed summary of the non-clinical and in vivo evaluations pertinent to use of the devices and accessories in the circuit and adequate instructions with respect to anticoagulation, circuit setup, performance characteristics with respect to compatibility among different devices and accessories in the circuit, and maintenance during a procedure.