(291 days)
The VisionAir Patient-Specific Airway Stent is indicated for the treatment of adults ≥22 years of age with symptomatic stenosis of the airway. The silicone stent is intended for implantation into the airway by a physician using the recommended deployment system or an equivalent rigid bronchoscope and stent placement system that accepts the maximum stent diameter being placed. The stent is intended to be in the patient up to 12 months after initial placement.
The subject device, VisionAir Patient-Specific Airway Stent is comprised of a cloudbased software suite and the patient-specific airway stent. These two function together as a system to treat symptomatic stenosis of the airway per the indications for use. The implantable patient-specific airway stent is designed by a physician using a CT scan as a guide in the cloud-based software suite. The airway is segmented from the CT scan and used by the physician in designing a patient-specific stent. When design is complete, the stent is manufactured via silicone injection into a 3D-printed mold and delivered to the treating physician nonsterile, to be sterilized before use.
The implantable patient-specific airway stent includes the following general features:
- Deployed through a compatible rigid bronchoscope system
- Made of biocompatible, implant-grade silicone
- Steam sterilizable by the end user
- Anti-migration branched design
- Anti-migration studs on anterior surface of main branch
- Single-use
The cloud-based software suite has the following general features:
- Upload of CT scans
- Segmentation of the airway
- Design of a patient specific stent from segmented airway
- Order management of designed stents
The provided text is a 510(k) Summary for the VisionAir Patient-Specific Airway Stent, which focuses on demonstrating substantial equivalence to a predicate device. It primarily discusses the device description, indications for use, technological characteristics, and a list of nonclinical performance and functional tests conducted.
However, the document does not contain the detailed information required to fulfill the request regarding acceptance criteria and the study that proves the device meets those criteria. Specifically, it lacks:
- A table of acceptance criteria and reported device performance: While it lists types of tests, it does not provide specific quantitative acceptance criteria or the actual results from these tests.
- Sample size used for the test set and data provenance: No information is given about the sample size for any clinical or performance test, nor the origin or nature of the data (retrospective/prospective, country).
- Number of experts used to establish ground truth and qualifications: This information is completely absent.
- Adjudication method for the test set: Not mentioned.
- Multi-Reader Multi-Case (MRMC) comparative effectiveness study details: No MRMC study is described; the testing mentioned is primarily non-clinical or related to software validation/verification, not human-AI comparative effectiveness.
- Standalone (algorithm-only) performance: While "Software Verification and Validation Testing" and "Airway Segmentation Process Testing" are mentioned, no specific standalone performance metrics (e.g., accuracy, precision for segmentation) or acceptance criteria are provided.
- Type of ground truth used: The document mentions "Airway Segmentation Process Testing" and refers to a predicate device (Mimics) for "performance reference specification" for dimensional testing of airway segmentation. This implies that the ground truth for segmentation would likely be derived from expert-reviewed segmentations or potentially from known anatomical measurements, but the method is not explicitly detailed.
- Sample size for the training set: There is no mention of a "training set" or any machine learning model that would require one. The software aspect described is for physician-guided design and semi-automated segmentation, not explicitly an AI/ML model that undergoes a training phase in the typical sense for medical image analysis.
- How the ground truth for the training set was established: Not applicable, as no training set is described.
The document states: "Reference devices, Mimics (K073468) and Osirix MD (K101342) were used for reference software performance specifications." and "Dimensional Testing of Airway Segmentation (reference device Mimics K073468 used for performance reference specification)". These statements hint at software validation, especially for the segmentation component, but do not provide the detailed study design, acceptance criteria, or results.
In summary, the provided text does not contain the necessary information to answer the request in detail, as it focuses on demonstrating substantial equivalence through non-clinical performance and functional testing rather than a clinical study with acceptance criteria for device performance based on human reader interaction or AI model performance.
§ 878.3720 Tracheal prosthesis.
(a)
Identification. The tracheal prosthesis is a rigid, flexible, or expandable tubular device made of a silicone, metal, or polymeric material that is intended to be implanted to restore the structure and/or function of the trachea or trachealbronchial tree. It may be unbranched or contain one or two branches. The metal tracheal prosthesis may be uncovered or covered with a polymeric material. This device may also include a device delivery system.(b)
Classification. Class II. The special control for this device is FDA's “Guidance for the Content of Premarket Notification Submissions for Esophageal and Tracheal Prostheses.”