K Number
K200904
Date Cleared
2021-08-05

(486 days)

Product Code
Regulation Number
862.1373
Panel
CH
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The Tosoh Automated Glycohemoglobin Analyzer HLC-723G8 is intended for in vitro diagnostic use for the measurement of % hemoglobin A1c (HbA1c) (DCCT/NGSP) and mmol/mol hemoglobin A1c (IFCC) in venous whole blood specimens using ion-exchange high-performance liquid chromatography (HPLC). This test is an aid in diagnosis of diabetes and identifying patients who may be at risk for developing diabetes, and for monitoring of long-term blood glucose control in individuals with diabetes mellitus.

Device Description

The Tosoh Automated Glycohemoglobin Analyzer HLC-723G8 is an automated High-Performance Liguid Chromatography (HPLC) system that separates and reports stable hemoglobin A1c (sA1c) percentage in venous whole blood. The operational portion of the G8 is composed of a sampling unit, liquid pump, degasser, column, detector, microprocessors, sample loader, smart media card, operation panel, and a printer. The Tosoh Automated Glycohemoglobin Analyzer HLC-723G8 uses ion-exchange HPLC for rapid, accurate, and precise separation of the stable form of HbA1c (sA1c) from other hemoglobin fractions. The G8 uses a non-porous cation exchange column and separates the hemoglobin components in the blood. Separation is achieved by utilizing differences in ionic interactions between the cation and exchange group on the column resin surface and the hemoglobin components in a step gradient elution. The hemoglobin fractions (designated as A1a. A1b. F. LA1c+, SA1c, A0, and, if present, H-V0, H-V2, H-V2 and H-V3) are subsequently removed from the column by performing a step-wise elution gradient using the varied salt concentrations in the Variant Elution Buffers HSi 1, 2 and 3. The peaks, H-V0, H-V1, H-V2 and H-V3 are typically presumptive HbAD, HbAS, HbAC and HbAE respectively. The software compares the retention times of hemoglobin fractions in a sample to the expected "windows of retention" and labels each fraction that correctly elutes within a defined expected window of retention. The software designates a hemoglobin fraction as POX (where X is the order of the peak as it elutes from the column) if it does not match a defined window of retention. All automated processes in the G8 are controlled by internal microprocessors, using software downloaded via a smart media card. The result report is printed and can be stored on the instrument. The data can be transmitted to a host computer through a bi-directional interface. The result report includes the sample ID, date, percentage and retention time of each fraction of hemoglobin, sA1c percentage and total A1 percentage, along with a chromatogram of the elution pattern of the hemoglobin fractions. If a sample contains a hemoglobin variant, the column elutes the fraction depending upon its charge.

AI/ML Overview

The provided text describes the non-clinical performance testing of the Tosoh Automated Glycohemoglobin Analyzer HLC-723G8 (subject device) to support its substantial equivalence to a predicate device. This document focuses on the analytical performance of a diagnostic device rather than an AI/ML powered device, so some of the specific questions regarding AI/ML study design (e.g., number of experts, adjudication methods, MRMC studies) are not applicable.

Here's the information extracted from the document:

1. Acceptance Criteria and Reported Device Performance

The acceptance criteria are generally implied by the statement "All performance testing results met their pre-determined acceptance criteria." While explicit numerical acceptance criteria for each test are not listed in a consolidated table, the discussion throughout the "Summary of Non-Clinical Performance Testing" implicitly defines them through the methodology and results. For example, for precision/repeatability, the claim of "imprecision at ≤ 2%" was a pre-established criterion. Similarly, for hemoglobin variant interference, "Non-clinically significant interference was defined as

§ 862.1373 Hemoglobin A1c test system.

(a)
Identification. A hemoglobin A1c test system is a device used to measure the percentage concentration of hemoglobin A1c in blood. Measurement of hemoglobin A1c is used as an aid in the diagnosis of diabetes mellitus and as an aid in the identification of patients at risk for developing diabetes mellitus.(b)
Classification. Class II (special controls). The special controls for this device are:(1) The device must have initial and annual standardization verification by a certifying glycohemoglobin standardization organization deemed acceptable by FDA.
(2) The premarket notification submission must include performance testing to evaluate precision, accuracy, linearity, and interference, including the following:
(i) Performance testing of device precision must, at a minimum, use blood samples with concentrations near 5.0 percent, 6.5 percent, 8.0 percent, and 12 percent hemoglobin A1c. This testing must evaluate precision over a minimum of 20 days using at least three lots of the device and three instruments, as applicable.
(ii) Performance testing of device accuracy must include a minimum of 120 blood samples that span the measuring interval of the device and compare results of the new device to results of a standardized test method. Results must demonstrate little or no bias versus the standardized method.
(iii) Total error of the new device must be evaluated using single measurements by the new device compared to results of the standardized test method, and this evaluation must demonstrate a total error less than or equal to 6 percent.
(iv) Performance testing must demonstrate that there is little to no interference from common hemoglobin variants, including Hemoglobin C, Hemoglobin D, Hemoglobin E, Hemoglobin A2, and Hemoglobin S.
(3) When assay interference from Hemoglobin F or interference with other hemoglobin variants with low frequency in the population is observed, a warning statement must be placed in a black box and must appear in all labeling material for these devices describing the interference and any affected populations.