K Number
K192239
Manufacturer
Date Cleared
2019-10-17

(59 days)

Product Code
Regulation Number
870.1252
Panel
CV
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The WavelinQ™ EndoAVF System is indicated for the creation of an arteriovenous fistula (AVF) using concomitant ulnar artery and ulnar vein or concomitant radial artery and radial vein in patients with minimum artery and vein diameters of 2.0 mm at the fistula creation site who have chronic kidney disease and need hemodialysis.

Device Description

The WavelinQ™ EndoAVF System consists of two single-use disposable magnetic catheters: a venous catheter and an arterial catheter. The venous catheter contains an array of magnets positioned on either side of a radiofrequency (RF) cutting electrode contained within an isolative housing. The arterial catheter contains a matching array of magnets positioned on either side of an electrode "backstop". The backstop serves as a mechanical stop for the cutting electrode to contact following the creation of the AVF. The magnets in the two catheters serve to align and appose the arterial backstop of the arterial catheter with the RF electrode of the venous catheter when positioned in the target AVF location. Radiofrequency energy can then be delivered through the electrode for cutting tissue and AVF creation.

The arterial and venous catheters are both comprised of braid reinforced Pebax catheter shafts. These shafts provide flexibility for device delivery and torquability to aid in rotational alignment and positioning. Both catheters include a soft, radiopaque, rapid exchange style Pebax tip for atraumatic device navigation with radiographic visibility. These tips allow the catheters to track over a standard guide wire 0.014" or smaller. The catheters include a handle/hub to facilitate device delivery, positioning and alignment.

AI/ML Overview

The provided text describes the WavelinQ EndoAVF System and its substantial equivalence to a predicate device (WavelinQ 4F EndoAVF System). However, it does not contain detailed information about specific acceptance criteria for a diagnostic performance study, nor does it describe a study that uses a test set, ground truth, or expert readers/adjudication in the way requested in the prompt.

The document refers to "acceptance criteria" in the context of device design verification and validation, but these appear to be related to engineering, safety, and functionality, rather than a diagnostic performance study comparing device outputs to a ground truth established by experts.

Therefore, I cannot provide a table of acceptance criteria and reported device performance, or details about sample size, data provenance, expert ground truth, adjudication methods, MRMC studies, or standalone algorithm performance, as these elements are not present in the provided text.

The closest information related to testing is in the "Performance Data: Non Clinical Performance Data" section, which lists:

  • Electrical Safety per IEC 60601
  • Electromagnetic Compatibility (EMC) Testing
  • Design Validation Cadaver Study
  • Magnet Array Force Coaptation Testing
  • S-Turn Tortuosity Coaptation and Alignment Comparison Testing

These tests are primarily focused on the physical and functional performance of the device's components and its ability to create the fistula, rather than assessing a diagnostic output against a clinical ground truth.

The document states: "The subject device, WavelinQ™ EndoAVF System, met all the predetermined acceptance criteria of design verification and validation as specified by applicable standards, guidance, test protocols and/or customer inputs." This is a general statement of compliance but does not provide the specifics requested for a diagnostic performance study.

In summary, the provided text does not contain the information necessary to fulfill the request for acceptance criteria and study details related to diagnostic performance.

§ 870.1252 Percutaneous catheter for creation of an arteriovenous fistula for hemodialysis access.

(a)
Identification. This device is a single use percutaneous catheter system that creates an arteriovenous fistula in the arm of patients with chronic kidney disease who need hemodialysis.(b)
Classification. Class II (special controls). The special controls for this device are:(1) Clinical performance testing must evaluate:
(i) The ability to safely deliver, deploy, and remove the device;
(ii) The ability of the device to create an arteriovenous fistula;
(iii) The ability of the arteriovenous fistula to attain a blood flow rate and diameter suitable for hemodialysis;
(iv) The ability of the fistula to be used for vascular access for hemodialysis;
(v) The patency of the fistula; and
(vi) The rates and types of all adverse events.
(2) Animal testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be assessed:
(i) Delivery, deployment, and retrieval of the device;
(ii) Compatibility with other devices labeled for use with the device;
(iii) Patency of the fistula;
(iv) Characterization of blood flow at the time of the fistula creation procedure and at chronic followup; and
(v) Gross pathology and histopathology assessing vascular injury and downstream embolization.
(3) Non-clinical performance testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be tested:
(i) Simulated-use testing in a clinically relevant bench anatomic model to assess the delivery, deployment, activation, and retrieval of the device;
(ii) Tensile strengths of joints and components;
(iii) Accurate positioning and alignment of the device to achieve fistula creation; and
(iv) Characterization and verification of all dimensions.
(4) Electrical performance, electrical safety, and electromagnetic compatibility (EMC) testing must be performed for devices with electrical components.
(5) Software verification, validation, and hazard analysis must be performed for devices that use software.
(6) All patient-contacting components of the device must be demonstrated to be biocompatible.
(7) Performance data must demonstrate the sterility of the device components intended to be provided sterile.
(8) Performance data must support the shelf life of the device by demonstrating continued sterility, package integrity, and device functionality over the identified shelf life.
(9) Labeling for the device must include:
(i) Instructions for use;
(ii) Identification of system components and compatible devices;
(iii) Expertise needed for the safe use of the device;
(iv) A detailed summary of the clinical testing conducted and the patient population studied; and
(v) A shelf life and storage conditions.