K Number
K190815
Device Name
BrainScope TBI
Date Cleared
2019-09-11

(166 days)

Product Code
Regulation Number
882.1450
Panel
NE
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

BrainScope TBI is a multi-modal, multi-parameter assessment indicated for use as an adjunct to standard clinical practice to aid in the evaluation of patients who have sustained a closed head injury, and have a Glasgow Coma Scale (GCS) score of 13-15 (including patients with concussion/mild traumatic brain injury (mTBI)).

BrainScope TBI provides a multi-parameter measure (CI)) to aid in the evaluation of concussion in patients between the ages of 13-25 years who present with a GCS score of 15 following a head injury within the past 72 hours (3 days), in conjunction with a standard neurological assessment of concussion. The CI is computed from a multivariate algorithm based on the patient's electroencephalogram (EEG), augmented by neurocognitive measures and selected clinical symptoms.

The BrainScope TBI Structural Injury Classification ("SIC") uses brain electrical activity (EEG) to determine the likelihood of structural brain injury visible on head CT for patients between the ages of 18-85 years (have a GCS score of 13 – 15), have sustained a closed head injury within the past 72 hours (3 days) who are being considered for a head CT. BrainScope TBI should not be used as a substitute for a CT scan. Negative likely corresponds to those with no structural brain injury visible on head CT. Positive likely corresponds to those with a structural brain injury visible on head CT. Equivocal may correspond to structural brain injury visible on head CT or may indicate the need for further observation or evaluation.

BrainScope TBI provides a measure of brain Function Index, (BFI)) for the statistical evaluation of the human electroencephalogram (EEG), aiding in the evaluation of head injury as part of a multi-modal, multi-parameter assessment, in patients 18-85 years of age (have a GCS score of 13 - 15) who have sustained a closed head injury within the past 72 hours (3 days).

The BrainScope TBI device is intended to record, measure, analyze, and display brain electrical activity utilizing the calculation of standard quantitative EEG (QEEG) parameters from frontal locations on a patient's forehead. The BrainScope TBI calculates and displays raw measures for the following standard QEEG measures: Absolute and Relative Power, Asymmetry, Coherence and Fractal Dimension. These raw measures are intended to be used for post hoc analysis of EEG signals for interpretation by a qualified user.

BrainScope TBI also provides clinicians with quantitative measures of cognitive performance in patients 13-85 years of age to aid in the assessment of an individual's level of cognitive function. These measures interact with the CI and can be used stand alone.

BrainScope TBI also stores and displays electronic versions of standardized clinical assessment tools that should be used in accordance with the assessment tools' general instructions. These tools do not interact with any other device measures, and are stand alone.

Device Description

BrainScope TBI (model: Ahead 500) is a portable, non-invasive, non-radiation emitting, point of care device intended to provide results and measures to support clinical assessments and aid in the diagnosis of concussion / mild traumatic brain injury (mTBI). The BrainScope TBI includes a new multivariate classification algorithm that analyzes a patient's electroencephalogram (EEG), augmented by neurocognitive performance and selected clinical symptoms to compute a multi-modal index called the Concussion Index (CI). BrainScope TBI provides the healthcare provider with a multi-parameter measure to aid in the evaluation of concussion following a head injury within the past 72 hours (3 days). The BrainScope TBI (Ahead 500) retains all the capabilities of the predicate (BrainScope TBI, model: Ahead 400) including the Structural Injury Classification (SIC) and the Brain Function Index (BFI). It also contains configurable, selectable computerized cognitive performance tests and digitized standard clinical assessment tools intended to provide a multi-modal panel of measures to support the clinical assessment of concussion / mTBI.

AI/ML Overview

Here's a breakdown of the acceptance criteria and the study details for the BrainScope TBI (model: Ahead 500) device, based on the provided text:

1. Table of Acceptance Criteria and Reported Device Performance

MetricAcceptance Criteria (Performance Goal)Reported Device Performance (95% CI)
Sensitivity0.690.8599 (0.8050, 0.9041)
Specificity0.5650.7078 (0.6588, 0.7535)

2. Sample Size Used for the Test Set and Data Provenance

  • Sample Size: 580 subjects
    • 229 matched controls
    • 144 healthy volunteers
    • 207 subjects who sustained closed head injury and were removed from play
  • Data Provenance: The study was conducted across 10 US clinical sites, including High Schools, Colleges, and Concussion Clinics. The study design appears to be prospective, given it involved testing subjects at different time points and with specific inclusion/exclusion criteria.

3. Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications

The document does not explicitly state the number of experts used or their specific qualifications (e.g., "Radiologist with 10 years of experience") for establishing the ground truth.

4. Adjudication Method for the Test Set

The document does not explicitly state the adjudication method used for the test set.

5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study

No, the document does not mention a Multi-Reader Multi-Case (MRMC) comparative effectiveness study to assess how much human readers improve with AI vs. without AI assistance. The study focuses on the standalone performance of the Concussion Index (CI) algorithm.

6. Standalone (Algorithm Only) Performance Study

Yes, a standalone performance study was done for the Concussion Index (CI). The reported sensitivity and specificity values are for the algorithm's performance in classifying concussions.

7. Type of Ground Truth Used

The clinical reference standard (ground truth) incorporated elements from guidelines published in the International Conference on Concussion in Sport (McCrory 2017; 2013) as well as the National Collegiate Athletic Association (NCAA) concussion policy. This suggests a clinical diagnosis/consensus-based ground truth, likely established by clinicians based on established guidelines and possibly direct observations or outcomes related to concussion (e.g., "removed from play"). It's not explicitly stated to be solely pathology or patient outcomes data, but rather a combination of clinical criteria.

8. Sample Size for the Training Set

The document states that the "cutoff (threshold) CI [was] derived from an algorithm development study that was independent of the validation study," but it does not provide the sample size for this algorithm development (training) study.

9. How the Ground Truth for the Training Set Was Established

The document implies that the ground truth for the "algorithm development study" (training set) would have been established using similar clinical criteria as the validation study, i.e., "consistent with similar changes seen in subjects with concussion," incorporating elements from the International Conference on Concussion in Sport guidelines and NCAA concussion policy. However, it does not explicitly detail the process for establishing ground truth for the training set.

§ 882.1450 Brain injury adjunctive interpretive electroencephalograph assessment aid.

(a)
Identification. A brain injury adjunctive interpretive electroencephalograph assessment aid is a prescription device that uses a patient's electroencephalograph (EEG) to provide an interpretation of the structural condition of the patient's brain in the setting of trauma. A brain injury adjunctive interpretive EEG assessment aid is for use as an adjunct to standard clinical practice only as an assessment aid for a medical condition for which there exists other valid methods of diagnosis.(b)
Classification. Class II (special controls). The special controls for this device are:(1) The technical parameters of the device, hardware and software, must be fully characterized and include the following information:
(i) Hardware specifications must be provided. Appropriate verification, validation, and hazard analysis must be performed.
(ii) Software, including any proprietary algorithm(s) used by the device to arrive at its interpretation of the patient's condition, must be described in detail in the software requirements specification (SRS) and software design specification (SDS). Appropriate software verification, validation, and hazard analysis must be performed.
(2) The device parts that contact the patient must be demonstrated to be biocompatible.
(3) The device must be designed and tested for electrical safety, electromagnetic compatibility (EMC), thermal, and mechanical safety.
(4) Clinical performance testing must demonstrate the accuracy, precision-repeatability and reproducibility, of determining the EEG-based interpretation, including any specified equivocal zones (cutoffs).
(5) Clinical performance testing must demonstrate the ability of the device to function as an assessment aid for the medical condition for which the device is indicated. Performance measures must demonstrate device performance characteristics per the intended use in the intended use environment. Performance measurements must include sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with respect to the study prevalence per the device intended use.
(6) The device design must include safeguards to ensure appropriate clinical interpretation of the device output (
e.g., use in appropriate patient population, or for appropriate clinical decision).(7) The labeling and training information must include:
(i) A warning that the device is not to be used as a stand-alone diagnostic.
(ii) A detailed summary of the clinical performance testing, including any adverse events and complications.
(iii) The intended use population and the intended use environment.
(iv) Any instructions technicians should convey to patients regarding the collection of EEG data.
(v) Information allowing clinicians to gauge clinical risk associated with integrating the EEG interpretive assessment aid into their diagnostic pathway.
(vi) Information allowing clinicians to understand how to integrate the device output into their diagnostic pathway when the device is unable to provide a classification or final result.