(284 days)
The KLS Martin Individual Patient Solutions (IPS) Planning System is intended for use as a software system and image segmentation system for the transfer of imaging information from a computerized tomography (CT) medical scan. The input data file is processed by the IPS Planning System and the result is an output data file that may then be provided as digital models or used as input to a rapid prototyping portion of the system that produces physical outputs including anatomical models, guides and case reports for use in the marking of cranial surgery. The IPS Planning System is also intended as a pre-operative software tool for simulating surgical treatment options.
The KLS Martin Individual Patient Solutions (IPS) Planning System is a collection of software and associated additive manufacturing (rapid prototyping) equipment intended to provide a variety of outputs to support reconstructive cranial surgeries. The system uses electronic medical images of the patients' anatomy (CT data) with input from the physician, to manipulate original patient images for planning and executing surgery. The system processes the medical images and produces a variety of patient specific physical and/or digital output devices which include anatomical models, guides, and case reports for use in the marking of cranial bone in cranial surgery.
The KLS Martin Individual Patient Solutions (IPS) Planning System is a software system and image segmentation system used for transferring imaging information from a CT scan. The system processes input data to produce output data files, which can be digital models or physical outputs like anatomical models, guides, and case reports for cranial surgery. It is also a pre-operative software tool for simulating surgical treatment options.
Here's an analysis of the acceptance criteria and supporting studies based on the provided text:
1. Table of Acceptance Criteria and Reported Device Performance:
Acceptance Criteria Category | Reported Device Performance |
---|---|
Tensile & Bending Testing | Polyamide guides withstand multiple sterilization cycles without degradation and maintain 85% of initial tensile strength after 6 months. Additively manufactured titanium devices are equivalent to or better than traditionally manufactured titanium devices. |
Biocompatibility Testing | Polyamide devices meet pre-defined acceptance criteria (cytotoxicity, sensitization, irritation, chemical/material characterization, acute systemic toxicity, material-mediated pyrogenicity, indirect hemolysis). Titanium devices (including acute systemic toxicity, material-mediated pyrogenicity, indirect hemolysis) meet pre-defined acceptance criteria. |
Sterilization Testing | All output devices (polyamide, epoxy/resin/acrylic, titanium) achieve a sterility assurance level (SAL) of $10^{-6}$ using the biological indicator (BI) overkill method for steam sterilization. |
Pyrogenicity Testing | Devices contain endotoxin levels below the USP allowed limit for medical devices in contact with cerebrospinal fluid ( |
§ 882.4310 Powered simple cranial drills, burrs, trephines, and their accessories.
(a)
Identification. Powered simple cranial drills, burrs, trephines, and their accessories are bone cutting and drilling instruments used on a patient's skull. The instruments are used with a power source but do not have a clutch mechanism to disengage the tip after penetrating the skull.(b)
Classification. Class II (performance standards).